

TAS MAGIC FOR SUCCESS ,_ FET MATHS

LEARN HOW - Remember for a moment

LEARN WHY - Remember for a life time

Join our

FET MATHS TEACHER WHATSAPP GROUPS

for access to teacher support and useful resources.

Scan me

Visit our

FET MATHS COMMUNITY PAGE

for access to helpful links, documents and videos.

Find out
ALL YOU NEED TO
KNOW ABOUT TAS

view extracts

buy our books

... and much more

Scan me

View our

GRADE 12 MATHS VIDEOS

including lessons on the full matric curriculum.

Scan me

ALGEBRA

CONTENT FRAMEWORK

- Quadratic Equations
 - Quadratic Expressions, f(x) / and the parabola, y = f(x)
 - Nature of the roots

Quadratic Inequalities

- Simultaneous Equations
- Exponents: Expressions & Equations
 - Surds: Expressions & Equations

Algebra

References to TAS Maths books

		-	JENIES 10a	Reytobaum
Gr 10 Maths 3-in-1 (Modules	s $1 \rightarrow 4$)		1.1	
Module 1: Numbers & Number	Patterns		1.1	
Type of Numbers			1.1 -	→ 1.4
Intervals & Surds			1.5 –	→ 1.7
Mixed Exercise			1.15 –	→ 1.16
Module 2: Exponents			2.1	
Laws, Expressions & Equations			2.1 –	→ 2.12
Module 3: Algebraic Expression	S		3.1	
Products & Factors			3.1 -	→ 3.16
Fractions			3.17 -	→ 3.24
Module 4: Algebraic Equations 8	& Inequalities		4.1	
Linear Equations & Inequalities			4.1 -	→ 4.8
Simultaneous Linear Equations			4.9 –	→ 4.13
Quadratic Equations			4.13 -	→ 4.19
Surd Equations			4.19	
Modelling			4.20 -	→ 4.21
Word Sums			4.22 -	→ 4.27
	Also see: Exemplar P1			

Q1 & Q2

Gr 11 Maths 3-in-1 (Modules $1 \rightarrow 3$)

1.1

Module 1: Numbers & Fundamental Concepts

 $.1 \rightarrow 1.8$

Module 2: Exponents & Surds

 $2.1 \rightarrow 2.7$

Module 3: Algebraic Expressions, Equations, Nature of Roots

 $3.1 \rightarrow 3.9$

Quadratic Inequalities

 $3.10 \rightarrow 3.11$

 $3.11 \rightarrow 3.12$

Simultaneous Equations

Also see: Exemplar P1

..... Q1

Q1 \rightarrow Q3

Gr 12 Maths 2-in-1 (Module 1)

1

1

Algebra & Numbers, Exponents & Surds

See Challenging Questions booklet:

pages $1 \rightarrow 2$

See the Topic Guides on p. 147 for further exam practice.

Gr 12 Maths Past Papers Toolkit

See the Topic Guides: DBE: p. 1 & IEB: p. 39

PATTERNS & SEQUENCES CONTENT FRAMEWORK

Linear Sequences

Quadratic Sequences

Arithmetic (Linear) Sequences $T_n \& S_n$

Geometric Sequences

 T_n , S_n & S_{∞}

Sigma (∑)

Gr 12

Patterns & Sequences

References to TAS Maths books

Gr 10 Maths 3-in-1 (Module 1)

Number & Geometric Patterns

Gr 11 Maths 3-in-1 (Module 4)

Number Patterns Linear Sequences Quadratic Sequences

Also see: Exemplar P1 (Q3)

Also see: Exemplar P1 (Q6 and Q7)

\longrightarrow	1.14
	\rightarrow

E1

4.1

 $4.1 \rightarrow 4.6$

47

 $4.7 \rightarrow 4.10$

Q2

Gr 12 Maths 2-in-1 (Module 2)

Classic Patterns & Quadratic Sequences
Arithmetic (Linear) Sequences

Geometric (Exponential) Sequences

Sigma (Σ) & Applications

Back pages: AP & GP Bookwork (Proofs of Sum formulae)

See Challenging Questions booklet:

pages $2 \rightarrow 3$

4 →

 $5 \rightarrow 0$

 $6 \rightarrow 7$

i

See the Topic Guide on p. 147 for further exam practice.

Gr 12 Maths Past Papers Toolkit

Back pages: Examinable proofs

.

See the Topic Guides: DBE: p. 1 & IEB: p. 39

GRAPHS & FUNCTIONS

CONTENT FRAMEWORK

- Concept/Definition of a function

 - LinesParabolas
- Hyperbolas

- Exponential function
 Logarithmic function (Gr 12)
- **Parameters**

Gr 10: **a** and **q** as in y = a.f(x) + q

Gr 11: **a**, **q** and **p** as in y = a.f(x + p) + q

Sketches, Equations, Interpretation

- Characteristics
 - domain

- range
- axis-intercepts

- turning points
- minimum & maximum
 - asymptotes
- shape & symmetry
- Average Gradient (Average rate of change)
- Intervals
- Definition of a Logarithm

Functions

References to TAS Maths books

Gr 10 Maths 3-in-1 (Module 6)

Introduction

Functions

Individual graphs and their properties

Interpretation of graphs

	Ŕ
° 🛫	/ 11 ,

Also see: Exemplar P1 (Q6 & Q7)

6.1

 $6.1 \rightarrow 6.4$

 $6.4 \rightarrow 6.5$

 $6.6 \rightarrow 6.17$

 $6.17 \rightarrow 6.21$

E2

Gr 11 Maths 3-in-1 (Module 6a)

Algebraic Graphs

 $6.1 \rightarrow 6.32$

Also see: Exemplar P1 (Q8 \rightarrow Q10)

Q2

6.1

Gr 12 Maths 2-in-1 (Modules 3, 4 and 7)

#3:Functions & Inverse functions

4:Logs & Log functions

#7:Polynomials (3rd degree)

See Challenging Questions booklet: pages $4 \rightarrow 9$

 $8 \longrightarrow 12$

 $12 \rightarrow 15$

 $27 \longrightarrow 28$

See the Topic Guide on p. 147 for further exam practice.

Gr 12 Maths Past Papers Toolkit

See the Topic Guides: DBE: p. 1 & IEB: p. 39

CALCULUS

CONTENT FRAMEWORK

- Concepts:
 - limit
 - average gradient
 - gradient of a tangent
 - limit of average gradient
 - derivative
- Rules of differentiation

- Tangents: Gradient & Equation
- Polynomials;Remainder & Factor Theorems
- Cubic graphs
- f, f', f" & Concavity
- Optimisation / Maximum & Minimum

Graph Sketching

Graph	Positive/ Negative	Y-intercept (x = 0)	X-intercept (y = 0)	Turning point/ Stationary pt(s)	Point of Inflection
Straight line	✓	✓	✓		
Parabola	✓	✓	✓	✓	
Cubic	✓	✓	✓	✓	✓

Note: Domain & Range

Calculus

References to TAS Maths books

Gr 12 Maths 2-in-1 (Modules 7 & 8)

Polynomials (3rd degree)

Differential Calculus

See Challenging Questions booklet:

pages $9 \rightarrow 15$

27	\longrightarrow	2.8
4/	,	20

 $29 \rightarrow 32$

See the Topic Guides on p. 147 for further exam practice.

Back pages: Concavity & The Point of Inflection

 $xv \rightarrow xvi$

Gr 12 Maths Past Papers Toolkit

Back pages: Concavity & The Point of Inflection

 $ix \rightarrow x$

See the Topic Guides: DBE: p. 1 & IEB: p. 39

FINANCE

Gr 10 & Gr 11 SIMPLE and COMPOUND GROWTH and DECAY

$$A = P(1 \pm in)$$
 $A = P(1 \pm i)^{n}$

Gr 11 NOMINAL and EFFECTIVE INTEREST RATES

The formula:
$$1 + i_{eff} = \left(1 + \frac{i_{nom}}{m}\right)^m$$

Gr 12 FUTURE AND PRESENT VALUE ANNUITIES

$$F_{v} = \frac{x[(1+i)^{n}-1]}{i} \qquad P_{v} = \frac{x[1-(1+i)^{-n}]}{i}$$

Finance

References to TAS Maths books

Gr 10 Maths 3-in-1 (Module 9)

Interest and Interest Rate Foreign Exchange Rates Revision Exercise

Also see: Exemplar P1 (Q4)

9	0.1	

 $9.1 \longrightarrow 9.5$

 $9.5 \longrightarrow 9.8$

 $9.8 \longrightarrow 9.11$

Gr 11 Maths 3-in-1 (Module 11)

Simple and Compound Growth and Decay Different Periods of Growth and Decay Timelines Nominal and Effective Interest Rates

Also see: Exemplar P1 (Q4 & Q5)

11.1

E1

 $11.1 \rightarrow 11.5$

 $11.5 \rightarrow 11.6$

 $11.7 \rightarrow 11.9$

 $11.9 \rightarrow 11.10$

Q1

Gr 12 Maths 2-in-1 (Module 5)

Annuities

Simple and Compound Growth and Decay Nominal and Effective Interest Rates Timelines Sinking Funds

See Challenging Questions booklet:

pages $20 \rightarrow 21$

15

 $15 \rightarrow 16$

16

 $16 \longrightarrow 17$

17

 $17 \rightarrow 19$

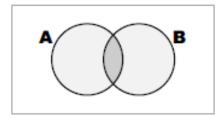
See the Topic Guide on p. 147 for further exam practice.

Gr 12 Maths Past Papers Toolkit

See the Topic Guides: DBE: p. 1 & IEB: p. 39

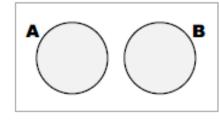
PROBABILITY THEORY

The Definition of Probability:


$$P(E) = \frac{n(E)}{n(S)}$$

i.e. Probability of an event $E = \frac{\text{the no. of ways } E \text{ can occur}}{\text{total no. of possible outcomes}}$

THE PROBABILITY RULES


GENERAL RULE

For ANY 2 events A and B:

P(A or B) = P(A) + P(B) - P(A and B)

MUTUALLY EXCLUSIVE EVENTS

There is no overlap of events A & B.

For 2 mutually exclusive events A and B:

P(A or B) = P(A) + P(B)

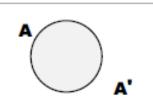
THE SUM

Note: Since A and B do not intersect, P(A and B) = 0 in this case.

INDEPENDENT EVENTS

For 2 independent events A and B:

 $P(A \text{ and } B) = P(A) \times P(B)$


THE PRODUCT

THE COMPLEMENTARY RULE

$$P(not A) = 1 - P(A)$$

Note: The sum of the probabilities

$$P(A) + P(A') = 1$$

Probability

References to TAS Maths books

Gr 10 Maths 3-in-1 (Module 12)

Definitions and Terminology Calculating Probability Visual Representations of Probability

Gr 11 Maths 3-in-1 (Module 12)

Introduction to Probability

2-Way Contingency Tables

Venn Diagrams

Exercises

Independent Events

Also see: Exemplar P1 (Q5)

1	\mathbf{a}	1
- 1	7	. I

12.1 12.2 12.3 12.2

12.3 12.11

E2

12.1

12.2 12.5

12.10 12.6

 $12.11 \rightarrow$ 12.14

 $12.15 \rightarrow$ 12.16

 $12.17 \rightarrow$ 12.19

Also see: Exemplar P1 (Q11 & Q12)

50

Q3

50

50 51

51 52

53 52

53

Gr 12 Maths 2-in-1 (Module 12)

The Probability Rules Venn Diagrams Tree Diagrams 2-Way Contingency Tables

& Fundamental Counting Principles

See Challenging Questions booklet: pages $16 \rightarrow 19$

See the Topic Guide on p. 147 for further exam practice.

Gr 12 Maths Past Papers Toolkit

See the Topic Guides: DBE: p. 1 & IEB: p. 39

STATISTICS

CONTENT FRAMEWORK

UNIVARIATE DATA (Gr 10 & 11)

- Organising, Summarising, Displaying data
- Measures of Central Tendency
- Measures of Dispersion
- Diagrams
- Variance & Standard Deviation
- Symmetry & Skewed Data
- Outliers

(Scatterplots)

BIVARIATE DATA (Gr 12)

- Scatterplots
- Regression
- Correlation

Statistics

References to TAS Maths books

Gr 10 Maths 3-in-1 (Module 10)

1: Organising data $10.1 \rightarrow 10.2$ # 2: Summarising data $10.2 \rightarrow 10.9$ # 3: Displaying data $10.10 \rightarrow 10.15$

Note: The Gr 10 Exemplar Exams and Memos are at the end of the book

Gr 11 Maths 3-in-1 (Module 13)

# 1:	Summary	$13.1 \rightarrow 13.4$
#2:	Measures of Central Tendency	$13.4 \rightarrow 13.5$
#3:	Measures of Dispersion	13.6
# 4:	Diagrams	$13.6 \rightarrow 13.18$
# 5:	Variance & Standard Deviation	$13.19 \rightarrow 13.22$
# 6:	Symmetric & Skewed Data	$13.23 \rightarrow 13.27$
# 7:	Outliers	13.28
#8:	Scatter Plots	$13.29 \rightarrow 13.30$
#9:	Mixed Exercise	$13.31 \rightarrow 13.32$

Note: The Gr 11 Exemplar Exams and Memos are at the end of the book

Gr 12 Maths 2-in-1 (Module 11)

1: Univariate Data # 2: Bivariate Data

Back pages: Calculator Instructions

The Formula Sheet

See Challenging Questions booklet – page 42

See the Topic Guide on p. 148 for further exam practice.

Gr 12 Maths Past Papers Toolkit

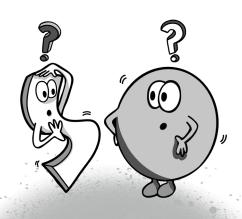
Back pages: Calculator Instructions

The Formula Sheet

See the Topic Guides: DBE: p. 2 & IEB: p. 40

 $44 \rightarrow 47$

 $47 \rightarrow 49$


xvii

xviii

xvii

xviii

ANALYTICAL GEOMETRY CONTENT FRAMEWORK

Formulae

The ∠ of inclination

Straight line graphs

Circles (Gr 12)

(Gr 10 & 11)

Analytical Geometry

References to TAS Maths books

Gr 10 Maths 3-in-1 (Module 8)

1: Important Revision: coordinates of a point, || and \bot lines, geometric figures

2: The 3 analytical concepts: gradient, distance, midpoint: in 3 classic situations

Note: The Gr 10 Exemplar Exams and Memos are at the end of the book

Gr 11 Maths 3-in-1 (Module 5)

#1: Revision and general approach

2: The angle of inclination (& gradient)

3: Straight line graphs

4: Polygons in Analytical Geometry

#5: Drawers of Tools

6: Mixed Exercise

Note: The Gr 11 Exemplar Exams and Memos are at the end of the book The Formula Sheet

Gr 12 Maths 2-in-1 (Module 9)

1: Gr 10 & 11 Revision

2: Gr 12 Circles, centre at the origin/any centre

Back pages: Analytical Geometry Toolkit

The Formula Sheet

Gr 12 Maths Past Papers Toolkit

Back pages: Trigonometry Proofs & Summary

The Formula Sheet

See Challenging Questions booklet pages $39 \rightarrow 41$

See the Topic Guide on p. 148 for further exam practice.

See the Topic Guides: DBE: p. 2 & IEB: p. 40

 $8.1 \rightarrow 8.3$

 $8.3 \rightarrow 8.13$

 $5.1 \rightarrow 5.4$

 $5.4 \rightarrow 5.8$

 $5.8 \rightarrow 5.11$

5.12

5.13

 $5.14 \rightarrow 5.15$

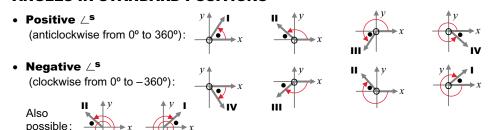
viii

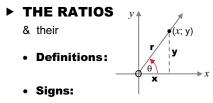
33

 $34 \rightarrow 35$

 $xiii \rightarrow xiv$

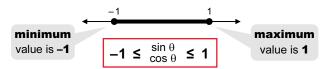
xviii


xi → xii


xviii

TRIG SUMMARY (Grade 12)

▶ ANGLES IN STANDARD POSITIONS

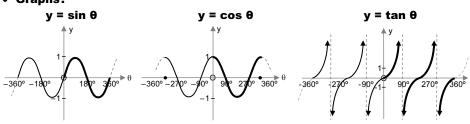


Signs:
sin θ is positive in I & II
$\cos\theta$ is positive in I & IV
tan θ is positive in I & III

Critical values:

sin θ	cos θ	tan θ
y O H	X A H	Y O A
11 1	I	III
0 0 0	-1 1	$\begin{bmatrix} -1 & -\infty & 1 \\ 0 & & 0 \\ 1 & +\infty & -1 \end{bmatrix}$

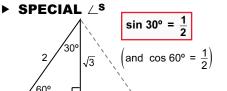
• Minimum & Maximum values of sin θ & cos θ: The values of $\sin \theta$ & $\cos \theta$ range from -1 to 1.

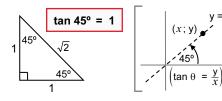

tan θ

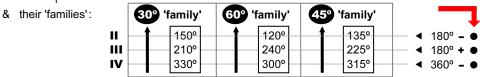
Note that $\tan \theta$ has no minimum or maximum values.

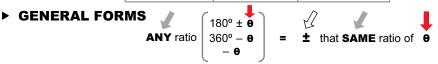
The range of values of tan θ is from $-\infty$ to ∞ .

All values are **proper fractions** or **0** or **±1**.

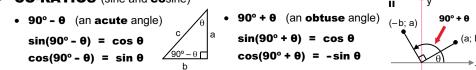

• Graphs:




▶ IDENTITIES



$$\sin^2 \theta + \cos^2 \theta = 1$$
 $\therefore \sin^2 \theta = 1 - \cos^2 \theta$
& $\cos^2 \theta = 1 - \sin^2 \theta$



► CO-RATIOS (sine and cosine)

The ratio CHANGES to the CO-ratio.

▶ SOLUTION OF △S

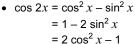
In Right-angled Δ^s , we use:

- Regular trig. ratios
- the Theorem of Pythagoras
- Area = $\frac{1}{2}$ bh

In Non-Right-angled Δ^s , we use:

- Sine Rule:
- Cosine Rule: sin A _ sin B _ sin C
 - $c^2 = a^2 + b^2 2ab \cos C$

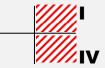
▶ DOUBLE ∠s


• Area Rule:

AREA = $\frac{1}{2}$ ab sin C But also: Area of $\Delta = \frac{1}{2}$ bh

COMPOUND \(\(\s^{\s} \)

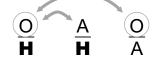
- $sin(A \pm B) = sin A cos B \pm cos A sin B$
- cos(A ± B) = cos A cos B ∓ sin A sin B


• $\sin 2x = 2 \sin x \cos x$

The Quadrants

THE

SIGNS



Angles in Standard Positions

Positive ∠^s

THE DEFINITIONS

&
$$\frac{y}{r}$$
 $\frac{x}{r}$ $\frac{y}{x}$

IDENTITIES

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$\sin^2\theta + \cos^2\theta = 1$$

SPECIAL ∠^s & their families

General forms

$$180^{\circ} + \theta$$

$$360^{\circ} - \theta \& -\theta$$

Co-ratios

$$90^{\circ} \pm \theta$$

Proofs of sin, cos and area rules & 2D/3D Problem-solving

The Graphs

Critical Values

(incl min & max)

Trigonometry

References to TAS Maths books

Gr 10 Maths 3-in-1 (Module 5)

#1: Pre-trig

Trigonometry of acute angles

#3: Trigonometry 'Unlimited' $(0^{\circ} \rightarrow 360^{\circ})$

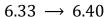
Note: The Gr 10 Exemplar Exams and Memos are at the end of the book

$5.1 \rightarrow 5.3$

 $5.4 \rightarrow 5.18$

 $5.18 \rightarrow 5.27$

Gr 11 Maths 3-in-1 (Modules 6b, 7 and 10)


#1: Trigonometric Graphs

#2: Trigonometry (Part 1) - General

Gr 11 Trigonometry Summary

3: Trigonometry (Part 2) – Area, Sine and Cosine Rules

Note: The Gr 11 Exemplar Exams and Memos are at the end of the book The Formula Sheet

 $7.1 \rightarrow 7.23$

7.24

viii

 $10.1 \to 10.17$

Gr 12 Maths 2-in-1 (Module 6)

#1: Trigonometry Part 1: General, including Compound angles

2: Trigonometry Part 2: 2D and 3D problems

Back pages: Area, Sine & Cosine Rules & PROOFS

Compound Angles & PROOFS Gr 12 Trigonometry Summary

The Formula Sheet

See Challenging Questions booklet:

pages $23 \rightarrow 28$

 $19 \rightarrow 25$

 $25 \rightarrow 27$

iv

V

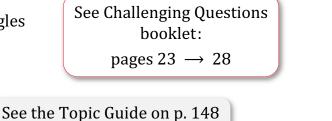
vi

xviii

Gr 12 Maths Past Papers Toolkit

Back pages: Trigonometry Proofs & Summary

The Formula Sheet


See the Topic Guides: DBE: p. 2 & IEB: p. 40

for further exam practice.

 $iv \rightarrow vii$

xviii

EUCLIDEAN GEOMETRY

CONTENT FRAMEWORK

Lines

Triangles

Quadrilaterals

• Circles (Gr 11)

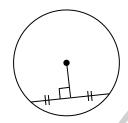
 $(Gr 8 \longrightarrow 10)$

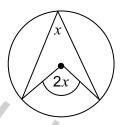
Gr 12: Theorem of Pythagoras (**Gr 8**)

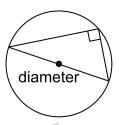
Similar Δ^{s} (Gr 9)

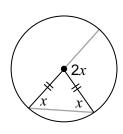
Midpoint Theorem (Gr 10)

& The Proportion Theorem

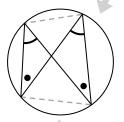

Ratio Proportion Area

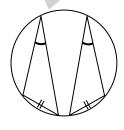



GROUPING/LINKING CIRCLE GEOMETRY THEOREMS

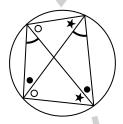

The grey arrows indicate how various theorems are used to prove subsequent ones

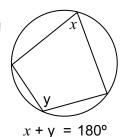
The 'Centre' group





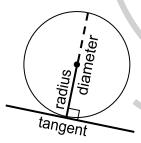
II The
'No Centre'
group

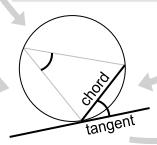


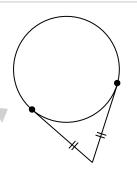




Equal chords subtend equal angles and, vice versa, equal angles are subtended by equal chords.


The 'Cyclic Quad.' group





The 'Tangent' group

EUCLIDEAN GEOMETRY: THEOREM STATEMENTS & ACCEPTABLE REASONS

LINES

The adjacent angles on a straight line are supplementary.	∠ ^s on a str line
If the adjacent angles are supplementary, the outer arms of these angles form a straight line.	adj ∠ ^s supp
The adjacent angles in a revolution add up to 360°.	∠ ^s around a pt OR ∠ ^s in a rev
Vertically opposite angles are equal.	vert opp ∠ ^s
If AB CD, then the alternate angles are equal.	alt ∠ ^s ; AB CD
If AB CD, then the corresponding angles are equal.	corresp ∠s; AB CD
If AB CD, then the co-interior angles are supplementary.	co-int ∠ ^s ; AB CD
If the alternate angles between two lines are equal, then the lines are parallel.	alt ∠ ^s =
If the corresponding angles between two lines are equal, then the lines are parallel.	corresp ∠ ^s =
If the co-interior angles between two lines are supplementary, then the lines are parallel.	co-int ∠ ^s supp

TRIANGLES

The interior angles of a triangle are supplementary.	\angle sum in \triangle OR sum of \angle ^S in \triangle OR int \angle ^S in \triangle
The exterior angle of a triangle is equal to the sum of the interior opposite angles.	$ext \ \angle of \ \Delta$
The angles opposite the equal sides in an isosceles triangle are equal.	∠ ^s opp equal sides
The sides opposite the equal angles in an isosceles triangle are equal.	sides opp equal ∠ ^s
In a right-angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.	Pythagoras OR Theorem of Pythagoras
If the square of the longest side in a triangle is equal to the sum of the squares of the other two sides then the triangle is right-angled.	Converse Pythagoras OR Converse Theorem of Pythagoras

If three sides of one triangle are respectively equal to three sides of another triangle, the triangles are congruent.	sss
If two sides and an included angle of one triangle are respectively equal to two sides and an included angle of another triangle, the triangles are congruent.	SAS OR S∠S
If two angles and one side of one triangle are respectively equal to two angles and the corresponding side in another triangle, the triangles are congruent.	AAS OR ∠∠S
If in two right angled triangles, the hypotenuse and one side of one triangle are respectively equal to the hypotenuse and one side of the other, the triangles are congruent.	RHS OR 90°HS
The line segment joining the midpoints of two sides of a triangle is parallel to the third side and equal to half the length of the third side.	Midpt Theorem
The line drawn from the midpoint of one side of a triangle, parallel to another side, bisects the third side.	line through midpt to 2 nd side
A line drawn parallel to one side of a triangle divides the other two sides proportionally.	line one side of Δ OR prop theorem; name lines
If a line divides two sides of a triangle in the same proportion, then the line is parallel to the third side.	line divides two sides of Δ in prop
If two triangles are equiangular, then the corresponding sides are in proportion (and consequently the triangles are similar).	Δ^s OR equiangular Δ^s
If the corresponding sides of two triangles are proportional, then the triangles are equiangular (and consequently the triangles are similar).	sides of Δ in prop
If triangles (or parallelograms) are on the same base (or on bases of equal length) and between the same parallel lines, then the triangles (or parallelograms) have equal areas.	same base; same height OR equal bases; equal height

QUADRILATERALS

The interior angles of a quadrilateral add up to 360°.	sum of \angle ^s in quad
The opposite sides of a parallelogram are parallel.	opp sides of m
If the opposite sides of a quadrilateral are parallel, then the quadrilateral is a parallelogram.	opp sides of quad are OR converse opp sides of m
The opposite sides of a parallelogram are equal in length.	opp sides of m
If the opposite sides of a quadrilateral are equal, then the quadrilateral is a parallelogram.	opp sides of quad are = OR converse opp sides of a parm
The opposite angles of a parallelogram are equal.	opp ∠ ^s of m
If the opposite angles of a quadrilateral are equal then the quadrilateral is a parallelogram.	opp ∠ ^s of quad are = OR converse opp angles of a parm
The diagonals of a parallelogram bisect each other.	diag of m
If the diagonals of a quadrilateral bisect each other, then the quadrilateral is a parallelogram.	diags of quad bisect each other OR converse diags of a parm
If one pair of opposite sides of a quadrilateral are equal and parallel, then the quadrilateral is a parallelogram.	pair of opp sides = and
The diagonals of a parallelogram bisect its area.	diag bisect area of m
The diagonals of a rhombus bisect at right angles.	diags of rhombus
The diagonals of a rhombus bisect the interior angles.	diags of rhombus
All four sides of a rhombus are equal in length.	sides of rhombus
All four sides of a square are equal in length.	sides of square
The diagonals of a rectangle are equal in length.	diags of rect
The diagonals of a kite intersect at right-angles.	diags of kite
A diagonal of a kite bisects the other diagonal.	diag of kite
A diagonal of a kite bisects the opposite angles.	diag of kite

CIRCLES

GROUP I

	GROUP I	
0	The tangent to a circle is perpendicular to the radius/diameter of the circle at the point of contact.	tan ⊥ radius tan ⊥ diameter
0	If a line is drawn perpendicular to a radius/diameter at the point where the radius/diameter meets the circle, then the line is a tangent to the circle.	line ⊥ radius OR converse tan ⊥ radius OR converse tan ⊥ diameter
0	The line drawn from the centre of a circle to the midpoint of a chord is perpendicular to the chord.	line from centre to midpt of chord
0	The line drawn from the centre of a circle perpendicular to a chord bisects the chord.	line from centre ⊥ to chord
	The perpendicular bisector of a chord passes through the centre of the circle.	perp bisector of chord
2x	The angle subtended by an arc at the centre of a circle is double the size of the angle subtended by the same arc at the circle (on the same side of the chord as the centre)	∠at centre = 2 × ∠ at circumference
(o)	The angle subtended by the diameter at the circumference of the circle is 90°.	∠ ^s in semi circle OR diameter subtends right angle OR ∠ in ½ ⊙
(o)	If the angle subtended by a chord at the circumference of the circle is 90°, then the chord is a diameter.	chord subtends 90° OR converse ∠ ^s in semi circle

GROUP II

T y	Angles subtended by a chord of the circle, on the same side of the chord, are equal	$\angle^{\mathbf{s}}$ in the same seg
x x	If a line segment joining two points subtends equal angles at two points on the same side of the line segment, then the four points are concyclic. (This can be used to prove that the four points are concyclic).	line subtends equal \angle^s OR converse \angle^s in the same seg
X X	Equal chords subtend equal angles at the circumference of the circle.	equal chords; equal ∠ ^s
10	Equal chords subtend equal angles at the centre of the circle.	equal chords; equal ∠ ^s
	Equal chords in equal circles subtend equal angles at the circumference of the circles.	equal circles; equal chords; equal ∠ ^s
A B X	Equal chords in equal circles subtend equal angles at the centre of the circles. (A and B indicate the centres of the circles)	equal circles; equal chords; equal ∠ ^s

GROUP III

x v	The opposite angles of a cyclic quadrilateral are supplementary (i.e. x and y are supplementary)	opp ∠ ^s of cyclic quad
180° – x	If the opposite angles of a quadrilateral are supplementary then the quadrilateral is cyclic.	opp \angle^s quad sup $\ \mathbf{OR}$ $\ \mathbf{converse}$ opp \angle^s of cyclic quad
(x)	The exterior angle of a cyclic quadrilateral is equal to the interior opposite angle.	ext ∠ of cyclic quad
x /x	If the exterior angle of a quadrilateral is equal to the interior opposite angle of the quadrilateral, then the quadrilateral is cyclic.	ext ∠ = int opp ∠ OR converse ext ∠ of cyclic quad

GROUP IV

A C	Two tangents drawn to a circle from the same point outside the circle are equal in length (AB = AC)	Tans from common pt OR Tans from same pt
x y x	The angle between the tangent to a circle and the chord drawn from the point of contact is equal to the angle in the alternate segment.	tan chord theorem
a b	If a line is drawn through the endpoint of a chord, making with the chord an angle equal to an angle in the alternate segment, then the line is a tangent to the circle. (If $x = b$ or if $y = a$ then the line is a tangent to the circle)	converse tan chord theorem OR ∠ between line and chord

GROUP II

x y	Angles subtended by a chord of the circle, on the same side of the chord, are equal	$\angle^{\mathbf{s}}$ in the same seg
x x	If a line segment joining two points subtends equal angles at two points on the same side of the line segment, then the four points are concyclic. (This can be used to prove that the four points are concyclic).	line subtends equal \angle^s OR converse \angle^s in the same seg
X x	Equal chords subtend equal angles at the circumference of the circle.	equal chords; equal ∠ ^s
10	Equal chords subtend equal angles at the centre of the circle.	equal chords; equal ∠ ^s
	Equal chords in equal circles subtend equal angles at the circumference of the circles.	equal circles; equal chords; equal ∠ ^s
A B	Equal chords in equal circles subtend equal angles at the centre of the circles. (A and B indicate the centres of the circles)	equal circles; equal chords; equal ∠ ^s

GROUP III

x v	The opposite angles of a cyclic quadrilateral are supplementary (i.e. x and y are supplementary)	opp ∠ ^s of cyclic quad
180° – x	If the opposite angles of a quadrilateral are supplementary then the quadrilateral is cyclic.	opp \angle^s quad sup $$ OR $$ converse opp \angle^s of cyclic quad
	The exterior angle of a cyclic quadrilateral is equal to the interior opposite angle.	ext ∠ of cyclic quad
x /x	If the exterior angle of a quadrilateral is equal to the interior opposite angle of the quadrilateral, then the quadrilateral is cyclic.	ext ∠ = int opp ∠ OR converse ext ∠ of cyclic quad

GROUP IV

A C	Two tangents drawn to a circle from the same point outside the circle are equal in length (AB = AC)	Tans from common pt OR Tans from same pt
x v x	The angle between the tangent to a circle and the chord drawn from the point of contact is equal to the angle in the alternate segment.	tan chord theorem
a b	If a line is drawn through the endpoint of a chord, making with the chord an angle equal to an angle in the alternate segment, then the line is a tangent to the circle. (If $x = b$ or if $y = a$ then the line is a tangent to the circle)	converse tan chord theorem OR ∠ between line and chord

Keep in touch

www.theanswer.co.za

info@theanswerseries.co.za

- The Answer Series Study Guides
- WhatsApp: 064 371 8715

Tel: (021) 671 0837

gretel@theanswerseries.co.za

We would love to hear from you!

Philosopher, Immanuel Kant (18th century philosopher)

Theory without practice is empty

Practice without theory is blind

