2025 TERM 1 PHYSICAL SCIENCES ATP & LESSON PLANNER **ANSWER**

GR 11

Join our WhatsApp group

Physical Sciences Community

ACADEMIC WEEKS	CAPS TOPIC	CORE CONTENT & PAGE NUMBERS Based on TAS Gr 11 PS 3-in-1 Class Text & Study Guide		SUGGESTED EXERCISES From TAS Gr 11 PS Class Text & Study Guide	POSSIBLE PRAC CONSOL
WEEK 1		Vectors in two dimensions: Resultant of vectors (<i>definition</i>); Sketch parallel and perpendicular vectors in a Cartesian plane, addition of co-linear vectors (<i>components of resultant vector</i>)	p. 1.1 p. 1.1 – 1.2	p. Q2: Q13	Practical p.1.4: Determin three non-linear force ve
15 – 17 Jan		Graphical representation of horizontal and vertical components R_x and R_y (<i>in a Cartesian plane</i>); Graphical representation of a resultant vector R	p. 1.3	p. Q2: Q13, Q14	Simulation of representa Cartesian Plane <u>here</u>
WEEK 2 20 – 24 Jan		The magnitude of the resultant vector <i>(Pythagoras)</i> ; The direction of the resultant vector <i>(trigonometric ratios)</i>	p. 1.3	p. Q2: Q13 p. Q2 – Q3: Q16	
		Resultant of two or more (<i>maximum 4</i>) 1-D and 2-D vectors: graphically – <i>tail-to-head & tail-to-tail (parallelogram) method;</i> algebraically - <i>component method, i.e.</i>	p. 1.4 – p. 1.6	p. Q1: Q10 p. Q2: Q11, Q12 p. Q3: Q17	Simulation on vector add
WEEK 3 27 – 31 Jan		Resolve a vector into parallel and perpendicular components; Calculate the resultant (component method cont.)	p. 1.5 – p. 1.6	p. Q1: Q6, Q8 p. Q2: Q14 p. Q3: Q17, Q18	
		Newton's laws: Types of forces - contact and non-contact forces, e.g. Normal force (N or F_N) (<i>definition</i>) Frictional force (f or F_i) (<i>definition</i>); $f \propto N$	p. 1.6 – p. 1.7	p. Q3: Q16, Q19 – Q21	- Simulation on basic for - Use <u>this</u> useful summa - Simulation – forces exe
WEEK 4 3 – 7 Feb		Static frictional force (f_s) (definition) Calculate the maximum static frictional force $f_s^{max} = \mu_k N$	p. 1.7 – p. 1.9	p. Q3: Q22 p. Q4: Q23.1 – Q23.3	Practical: The effect of d the maximum static frict
	Mechanics 33 school days	Kinetic frictional force (f_k) (definition); calculate kinetic friction $f_k = \mu_k N$	p. 1.9 – p. 1.10	p. Q1: Q3 p. Q4: Q26	
	PAPER 1: 68 marks	Force and free-body diagrams	p. 1.10 – p. 1.13	p. Q1: Q9 p. Q3: Q19 – Q21, Q23.4	
		Forces on an inclined plane: Parallel (II) and perpendicular (\bot) components (of weight (F_g))	p. 1.10 – p. 1.13	p. Q1: Q9 p. Q3: Q22	Simulation of forces on a
		Newton's first law of motion: Resultant/net force of forces in equilibrium (concept of inertia; Fnet = $0N$) Applications of Newton 1: Importance of safety belts	p. 1.14 – p. 1.15	p. Q4: Q24, Q25.1	
WEEK 5 10 – 14 Feb		Newton's second law of motion: $F_{net} = ma$ Resultant/net force of forces not in equilibrium; Applications of Newton II (along a horizontal, vertical and inclined plane)	p. 1.16 – p. 1.20	p. Q1: Q1, Q5 p.Q4 – Q6: Q25 – Q33	- <mark>Formal Practical</mark> p. 1.1 law of motion
WEEK 6 17 – 21 Feb	1	Problems with two-body systems (connected with a light inelastic rope) (combinations of 2 objects in the same or different planes, with or without friction)	p. 1.20 – p. 1.21	p. Q6 – Q7: Q35 – Q38	- Experiment examples i <u>PART 1; P1 MEMO</u> and - Simulation – problems
WEEK 7		Newton's third law of motion: Applications of Newton III; Identify Newton III pairs	p. 1.21 – p. 1.23	p. Q6 – Q7: Q34 – Q38	
		Newton's law of Universal Gravitation: Calculation of gravitational force; Weight	p. 1.23 – p. 1.25	p. Q1: Q2, Q7 p. Q7: Q39 – Q40	Verification of gravitatior
24-20160		Gravitational acceleration (g)	p. 1.26 – p. 1.27	p. Q7: Q39 – Q40	
		Difference between weight and mass (weight on different planets: w = mg); Weightlessness	p. 1.28	p. Q6: Q34	

Page	Keep track of your curricular progress here ↓
CTICAL TASKS / IDATION	DATE COMPLETED
ne the resultant of ectors	
ation of vectors in a	
dition <u>here</u>	
rces and motion <u>here</u> ary of Newton's laws erted on an object <u>here</u>	
different surfaces on tional force	
an inclined plane here	
<mark>6</mark> : Newton's second	
Newton's 2 nd law: <u>PART 2</u> ; <u>P2 MEMO</u> 2 body systems <u>here</u>	
nal acceleration p. 1.26	

WEEK 8 3 – 7 March WEEK 9 10 – 14 March WEEK 10 17 – 20 March	Electricity, and Magnetism 14 school days PAPER 1: 50 marks	Electrostatics: Coulomb's law – Force between charges: $F = \frac{kQ_1Q_2}{r^2}$	p. 5.1 – p. 5.2		Watch <u>this</u> video on cha through the transfer of e
		Separate forces and resultant force on a single charge; solve problems (restricted to 3 charges in 1-D; 3 charges in 2-D at right angles; a charge on which an electrostatic force and other forces act in 2-D)	p. 5.2 – p. 5.7	p. Q28 – Q29: Q12 – Q16, Q18.1, Q19.1 – Q19.2	Simulations on Coulom
		Electric field around charges	p. 5.8		No
		Electric field lines <i>(patterns)</i> around 2 unlike or 2 like point charges	p. 5.8	p. Q27: Q1 p. Q29: Q13.4, Q17.2	
		Electric field strength at a point in an electric field: $E = \frac{F}{Q}$ Force experienced by a charge in an electric field: $F = QE$	p. 5.9	p. Q29 – Q30: Q18 – Q21	shai Te
		Electric field strength at a distance r from a point charge: $E = k \frac{Q}{r^2}$	p. 5.9 – p. 5.10	p. Q29 – Q30: Q18 – Q21	×
		Net electric field (restrict to 3 charges in a straight line)	p. 5.10 – p. 5.11	p. Q30: Q19.3, Q20	
WEEK 11 24 – 28 March	Time for consolidation and revision (9 school days)		Formal Assessments: Term Test (min 100 mark		

Your Key to Exam Success in ...

Mathematics · Further Studies Mathematics · Mathematical Literacy Natural Sciences · Physical Sciences · Life Sciences · Agricultural Sciences EMS · Economics · Accounting · Business Studies · Consumer Studies Geography · History · English HL · English FAL · Afrikaans EAT

CONTACT US

(021) 671 0837 064 371 8715 (WhatsApp) info@theanswerseries.co.za 50 Imam Haron Road, Claremont, 7708 www.theanswer.co.za

rging of insulators electrons	
b's law <u>here</u> and <u>here</u>	
NOTE t all shared resources are AS creations – some are red contributions from our eacher WhatsApp group.	
) & Experiment (min 50 r	narks)

13

2025 TERM 2 PHYSICAL SCIENCES ATP & LESSON PLANNER ****ANSWER**SERIES

GR 11

Join our WhatsApp group

Physical Sciences Community

ACADEMIC WEEKS	CAPS TOPIC	CORE CONTENT & PAGE NUMBERS Based on TAS Gr 11 PS 3-in-1 Class Text Study Guide		SUGGESTED EXERCISES From TAS Gr 11 PS Class Text & Study Guide	POSSIBLE P CON
WEEK 1 8 – 11 Apr		Control Test – Discussion and Corrections of March Control Test			
WEEK 2 14 – 17 Apr		Electromagnetism: Magnetic field around a current carrying conductor: A straight current-carrying wire; A circular conductor; A current-carrying solenoid <i>(magnetic field lines; direction of magnetic field - RH rule)</i>	p. 5.11 – 5.14	p. Q30: Q23 – Q27	Watch <u>this</u> video around a current
		Environmental impact of overhead electrical cables	p. 5.14		
	Electricity & Magnetism 18 school days PAPER 1: 50 marks	The induction of an electric current; Magnetic flux; Calculate induced emf and current ($\varepsilon = -N \frac{\Delta \phi}{\Delta t}$; Faraday's law)	p. 5.14 – 5.17	p. Q30: Q23 – Q27	Watch <u>this</u> video induction
WEEK 3 22 – 25 Apr		Faraday's Law (state): Direction of induced current and magnetic field. (Lenz's law, Right hand rule)	p. 5.17 – 5.19	p. Q30: Q23 – Q27	
WEEK 4 29 Apr – 1 May (Holidays)		Electric circuits: Ohm's law: relationship between R, V and I at constant T $(R = \frac{V}{I})$; Ohmic & non-ohmic conductors; Problem solving	p. 5.20 – 5.26	p. Q31, Q32: Q28 – Q35	- Simulation to b with series/para - <mark>Practical (Inform p. 5.21</mark> : Ohm's
WEEK 5 5 – 9 May		Power and Energy : Definition; Equation for electrical power $(P = VI)$; combine with Ohm's law $(V = IR)$; Problem solving	p. 5.26 – 5.28	p. Q32, Q33: Q36 – Q38	Not
		<u>Gr 12 Physical Sciences 3-in-1</u> Internal resistance ($\varepsilon = I (R + r)$; Problem solving Gr 12	p. 230 – 233	Gr 12 Physical Sciences 3-in-1 p. 235 – 236: Q1 – Q5 p. 254 – 256: Q12 – 21	TAS share Tea
WEEK 6		Electrical energy transferred/used; kWh; Cost of electricity	p.5.28 – 5.29	p. Q33: Q37.5 & Q38.3	
WEEK 7 19 – 23 May		Atomic combinations : Chemical bonding: Electron structure & valence electrons; Lewis diagrams (<i>elements</i>); Electrostatic forces and energy (<i>energy & bond length graph</i>); Covalent chemical bonds (<i>rules in the formation of bonds</i>); Draw Lewis diagrams (<i>molecules</i>)	p.2.1 – 2.7	p. Q9, Q10: Q21 – Q23	Simulation on ato Potential Energy
	Matter &	Molecular shape: VSEPR theory (bond pairs & lone pairs determines symmetry/shape)	p. 2.7 – 2.9	p. Q10: Q25 – Q28 & Q30	Watch <u>this</u> video shape & solubility
WEEK 8 26 – 30 May	Materials 15 school days PAPER 1: 60 marks	Electronegativity of atoms: Polarity of bonds (polarity of a molecule depends on its shape/symmetry & polarity of bonds)	p. 2.9 – 2.13	p. Q10: Q23, Q24 & Q29	- Simulation on N - Simulations on and <u>here</u>
		Bond length and bond energy; Bond order; Bond strength	p. 2.13 – 2.15	p. Q9: Q21.1 & Q21.2	
WEEK 9 2 – 6 June		Interatomic and intermolecular forces: Definitions; Types of intermolecular forces (Van der Waals; Hydrogen bond)	p. 2.15 – 2.19	p. Q12, Q13: Q31 – Q35	
WEEK 10 9 – 13 June		Intermolecular forces and physical properties (i.e. boiling point, melting point, vapour pressure, solubility; Strength of forces relative to mass/size of molecule)	p. 2.19 – 2.26	p. Q10, Q12, Q13: Q27, Q31 – Q35	Watch <u>this</u> video
WEEK 11 & 12 17 – 27 June	Time for consolidation and revision (9 school days)			Formal Asse	ssments: June Ex

Schools will be closed during the week of 28 April to 2 May 2025, due to public holidays on the Monday and Thursday. The content scheduled for week 4, must therefore be divided between week 3 and week 5.

Page	Keep track of your curricular progress here ↓
PRACTICAL TASKS / ISOLIDATION	DATE COMPLETED
o on the magnetic field ht carrying conductor	
o on electromagnetic	
build different circuits rallel resistors <u>here</u>	
<mark>rmal Assessment)</mark> s Law	
NOTE t all shared resources are AS creations – some are red contributions from our acher WhatsApp group.	
itomic interactions & y vs Bond Length <u>here</u>	
o on a water molecule's ity of ionic salts in water	
Molecule Polarity <u>here</u> n Molecular shapes <u>here</u>	
o on hydrogen bonds	
xam (min 100 marks)	