

$$\sqrt{-2x+4} - x = 2$$

$$\therefore \sqrt{-2x+4} = x+2 \dots 0$$

$$\therefore (\sqrt{-2x+4})^2 = (x+2)^2$$

$$\therefore -2x + \cancel{A} = x^2 + 4x + \cancel{A}$$

$$\therefore 0 = x^2 + 6x$$

$$\therefore x(x+6) = 0$$

$$\therefore x = 0 < x \neq -6 \because \sqrt{-20} \text{ in } 0$$

$$2x + y = 3$$

$$\therefore y = 3 - 2x \dots 0$$

$$2: y^2 + xy = 2$$

$$0 \text{ in } 2: \qquad \therefore (3 - 2x)^2 + x(3 - 2x) - 2 = 0$$

$$\therefore 2x^2 - 9x + 7 = 0$$

$$\therefore (2x - 7)(x - 1) = 0$$

$$\therefore x = \frac{7}{2} \text{ or } 1$$

$$0: \quad \text{For } x = \frac{7}{2}: y = 3 - 2(\frac{7}{2}) = -4$$

$$\& \text{ For } x = 1: \ y = 3 - 2(1) = 1$$

$$\therefore \text{ Solution: } (\frac{7}{2}; -4) \text{ or } (1; 1) <$$

$$(1 + \frac{1}{2})(1 + \frac{1}{3})(1 + \frac{1}{4})(1 + \frac{1}{5}) \dots (1 + \frac{1}{n})$$

$$= (\frac{\cancel{A}}{\cancel{2}})(\frac{\cancel{A}}{\cancel{A}})(\frac{\cancel{B}}{\cancel{B}}) \dots (\frac{n+1}{n}) \dots \text{ Note the cancelling}$$

$$= \frac{n+1}{2}$$
So, n + 1 must be any even number ≥ 4

$$\therefore n must be any odd number greater than 2 <$$
i.e. n = 3; 5; 7; 9; ... <

PATTERNS & SEQUENCES [24] 2.1 **A.S:** a = 7 ; d = 5 ; n = 20 2.1.1 S_n = <u>n</u> [2a + (n – 1)d] \therefore **S**₂₀ = $\frac{20}{2}$ [2(7) + (20 - 1)(5)] = 10(14 + 95)= 1 090 < 2.1.2 $\mathbf{n} = 75$; $\mathbf{S}_{75} = 14\,400$ (& $\mathbf{a} = 7$) $T_n = a + (n - 1)d$ = 7 + (n - 1)(5)= 7 + 5n – 5 = 5n + 2 \therefore Sum of the terms added, T₂₁ to T₇₅, $\therefore \sum_{n=1}^{75} (5n+2) = S_{75} - S_{20} = 14\,400 - 1\,090 = 13\,310 \prec$ 2.2.1 T_1 T_2 T_3 T_4 ... T_{98} T_4 1st differences terms: 2n – 1 ... odd numbers \therefore T₉₉ - T₉₈ = 2(98) - 1 = 195 ... * ∴ **T₉₈ =** T₉₉ – 195 = 9632 - 195= 9 437 < OR: T₁ T₂ T₃ T₄ T₅ ... T₉₈ 9 632 \therefore T₉₉ = 9632 - 195 = 9437 Explanation: The 1st difference lies between T_1 and T_2 . The 2nd difference lies between T₂ and T₃. The 98th difference lies between T₉₈ and T₉₉. The general term for 1; 3; 5; ... is given by $T_k = 2k - 1$ \therefore T₉₈ = 2(98) - 1 = 195 (98th first difference)

Copyright © The Answer Series: Photocopying of this material is illegal

6.1
$$y = -x^2 + 4x + 5$$

Axis of Sym.: $x = -\frac{b}{2a} = -\frac{4}{2(-1)} = 2$
 \therefore Max $y = -2^2 + 4(2) + 5$
 $= -4 + 8 + 5$
 $= 9$
 \therefore B(2; 9) \lt
(OR: $f'(x) = -2x + 4 = 0$ at the turning point
 $\therefore -2x = -4$
 $\therefore x = 2$, etc.
6.2 Eqn of f: $y = -(x^2 - 4x - 5)$
 $\therefore y = -(x + 1)(x - 5)$
 $\therefore x = -1$ at A (& $x = 5$ at D)
 $\therefore m_{AC} = \frac{8 - 0}{3 - (-1)} = \frac{8}{4} = 2$
Subst. (3; 8) & m = 2 in
 $y - y_1 = m(x - x_1)$
 $y - 8 = 2(x - 3)$
 $\therefore y = 2x - 6 + 8$
 $\therefore g(x) = 2x + 2 \lt$
6.3 EH = $f(x) - g(x)$... vertical length
 $= (-x^2 + 4x + 5) - (2x + 2)$
 $= -x^2 + 2x + 3$
Max when $x = -\frac{2}{2(-1)} = 1$
 \therefore Max length of EH
 $= -1^2 + 2(1) + 3$
 $= 4$ units \lt
Experience valuable revision in our
Gr 10 Maths 3-in-1 study guide
which offers comprehensive
notes and exercises
as well as full solutions.

Copyright $\ensuremath{\mathbb{C}}$ The Answer Series: Photocopying of this material is illegal

Subtract the payment of R20 000, then the balance of the loan

= R47 805,20
= the Present value (P_v) of the
remaining **n** payments
$$\mathbf{P}_{v} = \frac{x \left[1 - (1 + i)^{-n} \right]}{i}$$

$$P_{v} = 47\ 805,20 \ ; \ x = 2\ 300,98 \ ; \ n? \ ; \ i = \frac{0.135}{12}$$

$$\therefore \frac{2\ 300,98 \left[1 - \left(1 + \frac{0.135}{12}\right)^{-n}\right]}{\frac{0.135}{12}} = 47\ 805,20$$

$$\therefore \left[1 - \left(1 + \frac{0.135}{12}\right)^{-n}\right] = 0.2337...$$

$$\therefore 0.76626... = \left(1 + \frac{0.135}{12}\right)^{-n}$$

$$\therefore -n = \log_{\left(1 + \frac{0.135}{12}\right)} 0.76626...$$

$$= -23,796...$$

$$\therefore n \approx 24 \text{ months} \qquad \dots \qquad The\ 24^{th} \text{ payment would be a lesser payment}$$

$$\therefore 12 \text{ months earlier < } \dots \qquad It would have been another 3 years, i.e.\ 36 \text{ months}$$

OR:

Using Present values:
$$P_v = A(1 + i)^{-n}$$
 and $P_v = \frac{x \left[1 - (1 + i)^{-n}\right]}{i}$

Let n be the total number of payments made.

$$100\ 000\ =\ 20\ 000\left(1+\frac{0,135}{12}\right)^{-24} + \frac{2\ 300,98\left[1-\left(1+\frac{0,135}{12}\right)^{-n}\right]}{\frac{0,135}{12}}$$

$$\therefore\ 1-\left(1+\frac{0,135}{12}\right)^{-n}\ =\ 0,41416...$$

$$\therefore\ \left(1+\frac{0,135}{12}\right)^{-n}\ =\ 0,585...$$

$$\therefore\ -n\ =\ \log_{\left(1+\frac{0,135}{12}\right)}0,585...\ =\ -47,796...$$

$$\therefore\ n\ =\ 47,796...$$

He needs to make 48 payments to pay off the loan.

... he will pay off the loan 12 months earlier than originally planned.

Finance Formulae

$$A = P(1 \pm in)$$

$$A = P(1 \pm i)^{n}$$

$$F_{v} = \frac{x\left[(1 + i)^{n} - 1\right]}{i}$$

$$P_{v} = \frac{x\left[1 - (1 + i)^{-n}\right]}{i}$$

$$1 + i_{eff} = \left(1 + \frac{i_{nom}}{m}\right)^{m}$$
DIFFERENTIAL CALCULUS [34]
8.1.1 $\frac{d}{dx}\left[3x - 5x^{2}\right] = 3 - 10x <$
8.1.2 $g(x) = 2x^{-2} - x^{\frac{7}{3}}$
 $\therefore g'(x) = -4x^{-3} - \frac{7}{3}x^{\frac{4}{3}} <$

$$\left[= -\frac{4}{x^{3}} - \frac{7}{3}\sqrt[3]{x^{4}} < \right]$$

8.2 $f(x) = x^{3} - 4x^{2} + 2x + 3$
 $\therefore f'(x) = 3x^{2} - 8x + 2$... the gradient of the tangent to f
 $\therefore f'(2) = 3(2)^{2} - 8(2) + 2$... the gradient of the tangent to f
 $\therefore f'(2) = 3(2)^{2} - 8(2) + 2$... the gradient of the tangent to f at $x = 2$
 $= -2$
8 $f(2) = 2^{3} - 4(2)^{2} + 2(2) + 3$
 $= 8 - 16 + 4 + 3$
 $= -1$
 \therefore Point of contact is (2; -1)
Subst. $m = -2$ & pt (2; -1) in
 $y - y_{1} = m(x - x_{1})$
 $\therefore y = -2x + 3 <$
OR: $y = mx + c$
 $\therefore c = 3, \text{ etc.}$

8.3.1
$$f(x) = -6x^{2}$$

$$\therefore f(x+h) = -6(x+h)^{2}$$

$$= -6x^{2} - 12xh - 6h^{2}$$

$$= -6x^{2} - 12xh - 6h^{2}$$

$$= -6x^{2} - 12xh - 6h^{2} - (-6x^{2})$$

$$= \lim_{h \to 0} \frac{-6x^{2} - 12xh - 6h^{2} - (-6x^{2})}{h}$$

$$= \lim_{h \to 0} \frac{12xh - 6h^{2}}{h}$$

$$= \lim_{h \to 0} (-12x - 6h)$$

$$= -12x <$$
8.3.2 $x \ge 0$; $x \in \mathbb{R} <$
or $x \le 0$; $x \in \mathbb{R} <$
8.3.3 Equation of f: $y = -6x^{2}$

$$\therefore \text{ Equation of } f^{-1}: x = -6y^{2}$$

$$\therefore 6y^{2} = -x$$

$$\therefore y^{2} = -\frac{x}{6}$$

$$\therefore y = -\sqrt{-\frac{x}{6}} \text{ where } x \le 0 < \dots f^{-1}(x) \le 0$$
9.1 $1 < x < \frac{5}{2} < \dots 1 \le x \le \frac{5}{2}$ will also be accepted
9.2 x-intercepts of f':
(1; 0) & (\frac{5}{2}; 0) <
9.3 At the point of inflection:
 $x = \frac{1+\frac{5}{2}}{2} = 1\frac{3}{4}$

$$\therefore f \text{ is concave up for } x > 1\frac{3}{4} <$$
9.4 $-9 \le k \le -8 \le 1$

Copyright © The Answer Series: Photocopying of this material is illegal

PROBABILITY [17] 11. All sit for at least one examination. n(M) = 22; n(T) = 16; n(G) = 18 $n(M \cap T \cap G') = 5$ $n(M \cap G \cap T') = 4$ $n(T \cap G \cap M') = 3$ n(T only) = 611.1 M22 **T**16 5 11 6 2 4 3 9 G18 0 $n(T) = 16 \implies n(M \cap T \cap G) = 2$ 11.2 The total number of learners = 40 The number taking at least 2 subjects = 4 + 2 + 3 + 5 = 14... P(at least 2 subjects) = $\frac{14}{40} = \frac{7}{20}$ (= 0,35 = 35%) <

Time

(t)

11.3 P(M) =
$$\frac{22}{40}$$
 & P(T) = $\frac{16}{40}$
∴ P(M) × P(T) = $\frac{22}{40} \times \frac{16}{40} = \frac{11}{50}$
whereas P(M and T) = $\frac{7}{40}$
∴ P(M) × P(T) ≠ P(M and T)
∴ The events are not independent <

12.1 <u>26</u> <u>10</u> <u>26</u> <u>10</u> \therefore No of different codes = $26 \times 10 \times 26 \times 10$ = 67 600 < 12.2 20 letters are used Choice of 18 for 1st spot No repeats of letters or digits Last slot must be odd 18 9 19 5 \therefore No of different codes = $18 \times 9 \times 19 \times 5$ = 15 390 \prec 12.3 <u>24</u> 9 <u>25 5</u> ... No of different codes = 27 000 % increase = $\frac{27\ 000 - 15\ 390}{15\ 390}$ % = 75,44% < 12 **The Answer Series** Gr 12 Maths 2-in-1 offers 'spot-on' exam practice in separate topics and exam papers. It includes a separate booklet on Level 3 & 4 questions

and strategies for problem solving.