Mathematics

TEST \& EXAM PREPARATION

CAPS
Anne Eadie, Gretel Lampe \& Tracy Howie

2-in-1

Grade 8 Mathematics 2-in-1 CAPS

TEST \& EXAM PREPARATION

The Answer Series Grade 8 Maths 2-in-1 study guide walks you through the fundamentals of critical concepts such as algebra and geometry, helping you to build a thorough understanding of every topic. With this strong foundation, your logic and mathematical reasoning will develop profoundly.

This 2-in-1 publication includes:

- Topic-based graded questions and full answers - to develop a step-by-step, thorough understanding of theory, techniques and concepts in every topic.
- Exam papers with full, detailed solutions.

Key features:

- Step by step, methodical approach
- Comprehensive answers, explanations and advice boxes
- Exam Papers with detailed memos - to put theory into practice and reinforce concepts in an exam format.

This Grade 8 Maths study guide is highly beneficial for learners of all levels and builds a strong base for future mathematical development. THE

CAPS
2-in-1

Anne Eadie, Gretel Lampe \& Tracy Howie

THIS STUDY GUIDE INCLUDES

Also available

GRADE 8
MATHS COMPANION
Workbook 1: Terms 1 \& 2
Workbook 2: Terms 3 \& 4
\& Answer book
1 Questions in Topics

2 Examination Papers

Detailed solutions are provided for both sections

CONTENTS

TOPIC-BASED QUESTIONS

Questions Answers

Whole Numbers
(2) Integers
(3) ExponentsNumeric \& Geometric Patterns 19

A25
5) Functions \& Relationships (Part 1)

6 Algebraic Expressions (Part 1)
7 Algebraic Equations (Introduction) 25

A32
(8) Algebraic Expressions (Part 2)
(9) Algebraic Equations (Part 1)
(10) Construction of Geometric Figures

30
A38
(11) Geometry of 2D Shapes 35

A47
12
Geometry of Straight Lines
41
A52
See EUCLIDEAN GEOMETRY: THEOREM STATEMENTS AND ACCEPTABLE REASONS at the back of the book.

PAPER 1	Common Fractions	Question	wers
		45	A55
	Decimal Fractions \& Percentages	47	A60
PAPER 2	The Theorem of Pythagoras	49	A63
	Area \& Perimeter of 2D Shapes	51	A65
	Volume \& Total Surface Area of 3D Objects	54	A69
	Data Handling	57	A72
PAPER 1	Functions \& Relationships (Part 2)	66	A81
	Algebraic Equations (Part 2)	68	A84
	Graphs	69	A87
PAPER2	Transformation Geometry	75	A91
	Geometry of 3D Objects	78	A94
	Probability	81	A95
Exam Papers Exam Memos		Pa	
			M1

Amended Teaching Plan for 2023/2024

TERM 1

TERM 3

8 Algebraic Expressions (Part 2) 26
7 Algebraic Equations (Introduction) 25
9 Algebraic Equations (Part 1) 29
20 Algebraic Equations (Part 2) 68
12 Geometry of Straight Lines 41
(11) Geometry of 2D Shapes 35
TERM 4

21 Graphs 69
(15) The Theorem of Pythagoras 49
(16) Area \& Perimeter of 2D Shapes 51

Topics not in the ATP 2023/2024

Construction of Geometric Figures3017 Volume and Total Surface Area of 3D Objects 54
18 Data Handling 57
Transformation Geometry 75
23 Geometry of 3D Objects 78
(24) Probability 81

8 ALGEBRAIC

 EXPRESSIONS (Part 2)| Sum | \Rightarrow | $\mathbf{+}$ | \ldots Add |
| :--- | :--- | :--- | :--- |
| Difference | \Rightarrow | $\mathbf{-}$ | \ldots Subtract |
| Product | \Rightarrow | \mathbf{x} | \ldots Multiply |
| Quotient | \Rightarrow | \div | \ldots Divide |

Algebraic Language

Exercise 8.1

1. Write algebraic expressions for the following statements, making the unknown number x.

Algebraic expressions can be used to translate word problems into Mathematics.
1.1 The sum of an unknown number and 7 .
1.2 The product of an unknown number and 3.
1.3 The difference between a certain number and 8.
1.4 Two more than double a number.
1.5 The quotient of an unknown number and 5 is squared.
1.6 The sum of an unknown number and 5, is multiplied by 2 .
1.7 Double the sum of an unknown number and y.
1.8 The difference between an unknown number squared and twice that same number.
1.9 The difference between an unknown number and 7 is divided by the square root of the same unknown number.
1.10 The product of an unknown number and y, decreased by 15.
2. Give expressions for the following and simplify where possible:

Time (Seconds, Minutes, Hours)

2.1 The number of minutes in 3 hours and 20 minutes.
2.2 The number of seconds in p minutes and 16 seconds.
2.6 The amount a customer will pay for 5 pairs of jeans that cost x Rand each, with a discount of R10 per pair.
2.7 The amount paid per banana if R20 was paid for a bag of 10 bananas.
2.8 The amount paid per apple if p rand is paid for a bag of q apples.

Months \& Years

2.9 The number of months in 8 years and 5 months
2.10 The number of months in t years and p months.

Age
2.11 A husband is 4 years older than his wife who is 45 years old.
2.12 A father is 28 years older than his son who is x years old.
2.13 A boy's sister is double his age. If he is 4 years old, how old is his sister?
2.14 A boy is double the age of his brother who is x years old.
2.15 The age of a person 5 years ago who is r years old now.
2.16 A girl is twice as old as her brother. He is x years old.

Write down:
(a) the girl's age
(b) the age of her brother 5 years ago
(c) the girl's age 5 years ago

$$
\begin{aligned}
& \mathbf{D}=\text { Speed } \times \mathbf{1} \\
& \mathbf{D} \\
& \mathbf{S}=\frac{\text { Distance }}{\text { Time }} \\
& \mathbf{T}=\frac{\text { Distance }}{\text { Speed }}
\end{aligned}
$$

Speed, Distance, Time

2.17 The distance a car travels in 1,5 hours if it travels at 100 km/h.
2.18 The distance a car travels in x hours if it travels at $\mathrm{y} \mathrm{km} / \mathrm{h}$.
2.19 The speed a car is travelling if it goes m km in n hours.
2.20 How long will it take a car to travel skm if it travels at $v \mathrm{~km} / \mathrm{h}$.

Rate

2.21 The amount of money earned if you are paid R20 an hour and you work for 6 hours.
2.22 The amount of money earned if you are paid $\mathrm{R} x$ an hour and you work for y hours.
(2)
2.23 It takes one person 12 days to build a wall. How many days will it take 2 people to build the same wall?
2.24 (a) A typist can type a document in 5 hours. How long will it take 2 typists to type the same document?
(b) A typist can type a document in x hours. Write an expression for the time it would take 3 typists to type the same document.

Simplifying Algebraic

Expressions

Exercise 8.2

Answers on p. A33

1. If $\mathrm{A}=3 x^{2}+5 x-2 ; \mathrm{B}=-2 x-x^{2}+7 ; \mathrm{C}=-5+2 x^{2}+x$ determine the following:
1.1 A + C
$1.2 C-B$
(3)(4)
1.3 the product of A and -2
2. Consider the following expressions:
A: $3 x^{2}-2+4 x$
B: $2 x-6 x^{2}+5 x^{2}$
C: $4-2 x^{2}+3 x$
2.1 Determine the value of $A+B+C$
2.2 Determine -3A
3.1 Subtract $3 x^{2}-2 x-7$ from $4 x^{2}-2 x-6$
3.2 From $5-7 y+y^{2}$, subtract $11+7 y-5 y^{2}$.
3. Determine the following:
4.1 Divide $8 x^{5} y^{4}-12 x^{2} y^{3}+24 x^{4} y^{5}$ by $-4 x^{2} y^{3}$
(3)
4.2 Multiply $3 x^{2} y-2 x y^{2}$ by $-x^{3} y$
(2)
4.3 Divide $-16 a^{3} b^{2}+24 a b-8 b^{3}$ by $-8 a b$
4.4 If $\mathrm{A}=(2 x-y), B=2$ and $C=(x+3 y)$, find and simplify $A B-C$.
4. Given $P=3 m^{2}-m n$ and $Q=m^{2}-2 m n$, find
5.1 $P-3 Q$ in terms of m and n.
(3)
$5.2 x$, if $x=3(P-3 Q)$ and $m=-1$ and $n=2$.

Consolidation of Algebraic Expressions

Exercise 8.3

Answers on p. A34
Simplify the following:

1. $3 \times a \times b$
2. $5 p \times-3 q$
3. $-(-3 x)(-2 x)$
4. $x^{7} \cdot x \cdot x^{2}$
(2)
5. $7 y^{3} z^{4} \times 3 y^{3} z$
(2)
6. $\left(4 m^{8}\right)^{2} \div 8 m^{10}$
(3)
7. $4 x^{5} y^{4} \div\left(-2 x y^{3}\right)$
(3)
8. $(a \times a \times a)^{2}-2(a \times a)^{3}$
9. $\left[-(2 p q)^{2}\right]^{3}$
(3)
10. $\left(-2 x^{2}\right)^{3} \div 2$
11. $3 \times(a+b)$
12. $3 x(x+5)$
(2)
13. $-4 x(x+2 y)$
14. $2 p^{2}-3 p q+2 q p-2 p$
15. $-7 c-(-5 c)$
16. $7-m \times 3+7 m$
17. $5 a-4(a+1)$
18. $2 a b+2 a(b+3)$
19. $5(3 m-4 n+1)$
20. $-3 m n\left(m^{3}-m^{2} n+n^{5}\right)$

$$
\begin{aligned}
& \text { 21. } 3 x^{2} y\left(2 x y^{3}-5 x y^{2}+x y\right) \\
& \text { 22. }+2 a^{2} b c^{3}\left(2 a b^{2} c+2^{2} a^{2} b c^{2}-2^{3} a b c\right) \\
& \text { 23. }\left(14 x^{3}-21 x\right) \div 7 x \\
& \text { 24. } 5-2(x+y)-(2 y-2 x) \\
& \text { 25. }-3(2 y-3 x)-2(x+y) \\
& \text { 26. }-2(y-x)(-2)-(x-3)-y
\end{aligned}
$$

$$
\text { 27. } 4 a b^{2}-3 b^{2} a+2 a \times(-3 b) b-2 a
$$

$$
\text { 28. } \frac{15 p-10 q+5 p q}{5}
$$

$$
\text { 29. } \frac{28 m-20 m n}{4}
$$

$$
\text { 30. } \frac{5 a^{2} b-a b^{3}}{a b}
$$

$$
\text { 31. } \frac{15 a-21}{-3 a}
$$

$$
\text { 32. } \frac{y^{2}+y-7 y-18 y^{3}+11 y^{2}}{6 y}
$$

$$
\text { 33. } x^{2} \times x^{0}+2 x-2 x^{2}
$$

$$
\text { 34. }\left(-48 t^{4} s-12 t^{2} s^{5}\right) \div(12 t s)
$$

$$
\text { 35. } \frac{(2+3)\left(x^{2}+3\right)}{15}
$$

$$
\text { 36. } \quad\left[(7 \mathrm{y} \times x)^{2}+7 x^{2} \mathrm{y}^{2}\right] \div 4 x \mathrm{y}^{2}
$$

$$
\text { 37. } \sqrt{49 x^{22} y^{16}}
$$

$$
\text { 38. } \sqrt{25 x^{2}-9 x^{2}} \div 4 x
$$

$$
\text { 39. } \sqrt[3]{\left(8 d^{3}\right)^{2}}-3 d(d+2)
$$

40. $\frac{12 x \times 0}{3}$

Copyright © The Answer Series: Photocopying of this material is illegal

(3)
(2)
10. $\frac{1}{5}$ is the multiplicative \qquad of 5 .
11. 0 is the \qquad element for addition.
12. $\{1 ; 2 ; 3 ; 6\}$ are the \qquad of 6 .

Down

The number you divide by to get a quotient is the
8. $Q \cup Q^{\prime}=$ the set of \qquad numbers.

9. Any fractions which are not equivalent fractions are \qquad .

A fun puzzle Answers on p. A35
 Read the questions and complete the crossword puzzle.

Across

1. $2(x+y)=2 x+2 y$ shows the \qquad
2. In an algebraic expression x is called a
3. $\{4 ; 6 ; 8 ; 9 ; 10 ; 12 ; 14 ; 15\}$ are \qquad numbers from 1 to 15 .
4. An algebraic expression with three terms is a \qquad _.
5. A number into which only one and itself can divide is a \qquad number.
6. A number which can be written in the form $\frac{a}{b}$ where a and b are integers, is a \qquad
7. $\frac{5+2 \times 6}{0}$ is
 .
 law.
\qquad —. number.

NOTES

0

16 AREA \& PERIMETER OF 2D SHAPES: FORMULAE

SI Units \& Conversions

In calculations, always check

 that the units are the same.
Area \& Perimeter

Exercise 16.1

Answers on p. A65

1. Find the area and perimeter of the following shapes:
1.1
1.2

(4)(4)
1.3

1.5

(4)(6)

2. Calculate the perimeter and area of the following

Give your answers in mm and mm^{2}.
3.2 Kite JKLM has the following dimensions:
$\rightarrow \mathrm{JK}=2 \mathrm{~cm}$, $L M=3,5 \mathrm{~cm}$
b $K M=3 \mathrm{~cm}$

$$
\Rightarrow \mathrm{JL}=4,5 \mathrm{~cm}
$$

(8)
2. The following two pictures both have a frame with a width of 2 cm :

2.1 Which frame has the smallest perimeter?
(4)
2.2 Which picture has the largest area?
(6)

6.2

(10)

(8)
5. Determine the area of the shaded region if the radius of the circle is 9 cm .

Give your answer

in mm^{2}.

38 cm
(7)
6. Calculate the area of the shaded parts in the shapes below:
4. The school decides to build a new swimming pool If a swimming pool costs R2 100/m², how much will it cost the school to build the swimming pool?

6.1
cm and cm^{2}.
(12)

Solving problems using Area and Perimeter

Exercise 16.2

Answers on p. A67

1. The area of the rectangle alongside is $48 \mathrm{~cm}^{2}$.

Determine the value of x.

(4)
2.

Find algebraic expressions for:
2.1 The area of the rectangle.
(3)
2.2 The perimeter of the rectangle.
(3)
2.3 If the area of the rectangle is $60 \mathrm{~cm}^{2}$, find the value of x.
(4)
3. If the area of a Compact Disc (CD) is $10568 \mathrm{~mm}^{2}$, calculate the radius of the CD . (Ignore the hole in the middle.)

4. A circular rotating water spray covers an area of $12 \mathrm{~m}^{2}$. How far away from the spray would you have to stand if you don't want to get wet? Round off your answer to the nearest metre.
5. The diagram below shows three circles, each with a diameter of 12 cm .

Each vertex of the triangle is at the centre of a circle.

What is the perimeter of the triangle?
(4)

6.1 Name the quadrilateral PQRS, giving a reason for your answer.
$6.2 \quad \hat{\mathrm{~T}}_{1}=$ \qquad
Give a reason for your answer.
(2)
6.3 If PT $=8 \mathrm{~cm}$ and $\mathrm{QS}=12 \mathrm{~cm}$, calculate the length of $P Q$ giving a reason.
6.4 Now, if $T R=2 P T$, calculate the perimeter of PQRS to the closest cm .
6.5 Calculate the area of quadrilateral PQRS.
7. The Yin-Yang symbol below is made up of a black and a white section. The black teardrop shape is given as a sketch with dimensions.

Determine the perimeter of this teardrop shape. Round the answer off to two decimal places.

(8)
8. The diagram alongside represents a rectangle. The perimeter of the rectangle is 37 cm .

The length and breadth are given in the diagram.
What is the value of x in the diagram?
9. The radius of a car's wheel is 42 cm .

What distance, in kilometres, has the car travelled after 2000 revolutions of the wheel?
10.

$E F=2 E H$ (EF is twice the length of EH)
If the perimeter of EFGH is 30 cm , calculate the length of FG. (Let EH be x)

8 ALGEBRAIC EXPRESSIONS (Part 2)

Sum	\Rightarrow	$\mathbf{+}$	\ldots Add
Difference	\Rightarrow	$\mathbf{-}$	\ldots Subtract
Product	\Rightarrow	\mathbf{x}	\ldots Multiply
Quotient	\Rightarrow	\div	\ldots Divide

Exercise 8.1

$1.1 x+7$
$1.2 x \times 3=3 x$
$1.3 x-8$
$1.42 x+2$
$1.5\left(\frac{x}{5}\right)^{2}$
$1.7 \quad 2(x+y)$
$1.9 \quad \frac{x-7}{\sqrt{x}}$
$1.8 x^{2}-2 x$
$1.10 x \times y-15=x y-15$

Time (Seconds, Minutes, Hours)

2.1 number of minutes $=3 \times 60+20$

$$
\begin{aligned}
& =180+20 \\
& =200 \text { minutes }
\end{aligned}
$$

> 60 seconds in a minute 60 minutes in an hour
2.2 number of seconds $=p \times 60+16$

$$
=(60 p+16) \text { seconds }
$$

Cost

2.3 amount $=4 \times 80$
= R320
$2.4 \quad 2(m-n)$
2.5 amount $=100-20$

$$
=R 80
$$

$2.65(x-10)$ Rand

2.7 amount per banana $=\frac{20}{10}$

$$
=\text { R2 per banana }
$$

2.8 amount per apple $=\frac{p}{q}$

Months \& Years

2.9 number of months $=8 \times 12+5$

$$
=96+5
$$

$$
\text { = } 101 \text { months }
$$

2.10 number of months $=t \times 12+p=12 t+p$

Age

2.11 husband's age $=45+4$

$$
\text { = } 49 \text { years }
$$

2.12 father's age $=x+28$
2.13 sister's age $=2 \times 4$

$$
=8 \text { years }
$$

2.14 boy's age $=2 \times x$

$$
=2 x \text { years }
$$

2.15 age of person 5 years ago $=(r-5)$ years
2.16 (a) $2 x$ years
(b) $(x-5)$ years
(c) $(2 x-5)$ years

Speed, Distance, Time

$$
\begin{aligned}
& \text { 2.17 Distance }=1,5 \times 100 \quad 2.18 \text { Distance }=x \times y \\
& =150 \mathrm{~km} \quad=x y \mathrm{~km} \\
& \text { 2.19 Speed }=\frac{\mathrm{m}}{\mathrm{n}} \mathrm{~km} / \mathrm{h} \quad \text { 2.20 } \text { Time }=\frac{\mathrm{s}}{\mathrm{v}} \text { hours }
\end{aligned}
$$

Rate

2.21 amount earned $=20 \times 6$
= R120
2.22 amount earned $=x \times y$

$$
=R x y
$$

$2.231 \times 12=12$

$$
2 \times 6=12
$$

It will take 2 people 6 days to build the same wall. [The more people, the less time needed.]
2.24 (a) $2 \frac{1}{2}$ hours $\ldots 5 \div 2$ or $\frac{5}{2}$
(b) $\frac{x}{3}$ hours

Simplifying Algebraic Expressions

Exercise 8.2

Questions on p. 27
1.1 A + C
$=\left(3 x^{2}+5 x-2\right)+\left(-5+2 x^{2}+x\right)$
$=3 x^{2}+5 x-2-5+2 x^{2}+x$
$=5 x^{2}+6 x-7$
1.2 C-B
$=\left(-5+2 x^{2}+x\right)-\left(-2 x-x^{2}+7\right)$
$=-5+2 x^{2}+x+2 x+x^{2}-7$
$=3 x^{2}+3 x-12$

$$
\begin{array}{rl}
1.3 & \mathrm{~A} \times-2 \\
& =-2 \mathrm{~A} \\
& =-2\left(3 x^{2}+5 x-2\right) \\
& =-6 x^{2}-10 x+4
\end{array}
$$

2.1 $A+B+C$
$=\left(3 x^{2}-2+4 x\right)+\left(2 x-6 x^{2}+5 x^{2}\right)+\left(4-2 x^{2}+3 x\right)$
$=3 x^{2}-2+4 x+2 x-6 x^{2}+5 x^{2}+4-2 x^{2}+3 x$
$=9 x+2$
$2.2-3 \mathrm{~A}=-3\left(3 x^{2}-2+4 x\right)$

$$
=-9 x^{2}-12 x+6
$$

3.1 | $4 x^{2}-2 x-6$ |
| :--- |
| $3 x^{2}-2 x-7$ |
| $x^{2}+1$ |

4.1 $\frac{8 x^{5} y^{4}-12 x^{2} y^{3}+24 x^{4} y^{5}}{-4 x^{2} y^{3}}$
$=\frac{8 x^{5} y^{4}}{-4 x^{2} y^{3}}+\frac{-12 x^{2} y^{3}}{-4 x^{2} y^{3}}+\frac{24 x^{4} y^{5}}{-4 x^{2} y^{3}}$
$=-2 x^{3} y+3-6 x^{2} y^{2}$
$4.2-x^{3} y\left(3 x^{2} y-2 x y^{2}\right)$
$=-3 x^{5} y^{2}+2 x^{4} y^{3}$
$4.3 \quad \frac{-16 a^{3} b^{2}+24 a b-8 b^{3}}{-8 a b}$
$=\frac{-16 a^{3} b^{2}}{-8 a b}+\frac{24 a b}{-8 a b}+\frac{-8 b^{3}}{-8 a b}$
$=2 a^{2} b-3+\frac{b^{2}}{a}$
4.4 $\quad \mathrm{AB}-\mathrm{C}$
$=(2 x-y) \times 2-(x+3 y)$
$=2(2 x-y)-(x+3 y)$
$=4 x-2 y-x-3 y$
$=3 x-5 y$
5.1 P-3Q
$=\left(3 m^{2}-m n\right)-3\left(m^{2}-2 m n\right)$
$=3 m^{2}-m n-3 m^{2}+6 m n$
$=5 \mathrm{mn}$
$5.2 x=3(P-3 Q)$
$=3(5 \mathrm{mn}) \quad \ldots P-3 Q=5 \mathrm{mn}$ from $Q 5.1$
$=15 \mathrm{mn}$
$=15(-1)(2) \quad \cdots$ given $m=-1$ and $n=2$ $=-30$

Consolidation of Algebraic Expressions

Exercise 8.3

1. $3 \times a \times b=3 a b$
2. $-(-3 x)(-2 x)=-6 x^{2}$
3. $7 y^{3} z^{4} \times 3 y^{3} z$
$=21 y^{6} z^{5}$
4. $4 x^{5} y^{4} \div\left(-2 x y^{3}\right)$
$=\frac{4 x^{5} y^{4}}{-2 x y^{3}}$
$=-2 x^{4} y$
$=-2 x^{4} y$
5. $\left[-(2 p q)^{2}\right]^{3}$
$=\left[-\left(4 p^{2} q^{2}\right)\right]^{3}$
$=-64 p^{6} q^{6}$

Questions on p. 27
2. $5 p \times-3 q=-15 p q$
4. $x^{7} \cdot x \cdot x^{2}=x^{7+1+2}$

$$
=x^{10}
$$

6. $\left(4 m^{8}\right)^{2} \div 8 m^{10}$
$=\frac{16 \mathrm{~m}^{16}}{8 \mathrm{~m}^{10}}$
$=2 \mathrm{~m}^{6}$
7. $(a \times a \times a)^{2}-2(a \times a)^{3}$
$=\left(a^{3}\right)^{2}-2\left(a^{2}\right)^{3}$
$=a^{6}-2 a^{6}$
$=-a^{6}$
8. $\left(-2 x^{2}\right)^{3} \div 2$
$=\frac{-8 x^{6}}{2}$
9. $3 \times(a+b)$
10. $3 x(x+5)$
$=3 a+3 b$
$=3 x^{2}+15 x$
11. $-4 x(x+2 y)$
$=-4 x^{2}-8 x y$
12. $2 p^{2}-3 p q+2 q p-2 p$
$=2 p^{2}-3 p q+2 p q-2 p$
$=2 p^{2}-p q-2 p$
$p \times q=q \times p$
13. $-7 c-(-5 c)$
$=-7 c+5 c$
14. $7-m \times 3+7 m$
$=7-3 m+7 m$
$=7+4 m$
15. $5 a-4(a+1)$
$=5 a-4 a-4$
16. $2 a b+2 a(b+3)$
$=2 a b+2 a b+6 a$
$=4 a b+6 a$
17. $5(3 m-4 n+1)$
$=15 m-20 n+5$
18. $-3 m n\left(m^{3}-m^{2} n+n^{5}\right)$
$=-3 m^{4} n+3 m^{3} n^{2}-3 m n^{6}$
19. $3 x^{2} y\left(2 x y^{3}-5 x y^{2}+x y\right)$
$=6 x^{3} y^{4}-15 x^{3} y^{3}+3 x^{3} y^{2}$
20. $+2 a^{2} b c^{3}\left(2 a b^{2} c+2^{2} a^{2} b c^{2}-2^{3} a b c\right)$
$=4 a^{3} b^{3} c^{4}+8 a^{4} b^{2} c^{5}-16 a^{3} b^{2} c^{4}$
21. $\frac{14 x^{3}-21 x}{7 x}$
$=\frac{14 x^{3}}{7 x}-\frac{21 x}{7 x}$
$=2 x^{2}-3$

22. $5-2(x+y)-(2 y-2 x)$
$=5-2 x-2 y-2 y+2 x$
$=5-4 y$
23. $-3(2 y-3 x)-2(x+y)$
$=-6 y+9 x-2 x-2 y$
$=7 x-8 y$
24. $-2(y-x)(-2)-(x-3)-y$
$=(-2)(-2)(y-x)-(x-3)-y$
$=4(\mathrm{y}-\mathrm{x})-(x-3)-\mathrm{y}$
$=4 y-4 x-x+3-y$
$=3 y-5 x+3$
25. $4 a b^{2}-3 b^{2} a+2 a \times(-3 b) b-2 a$
$=4 a b^{2}-3 b^{2} a+2 a b(-3 b)-2 a$
$=4 a b^{2}-3 a b^{2}-6 a b^{2}-2 a$
$=-5 a b^{2}-2 a$
26. $\frac{15 p-10 q+5 p q}{5}$
$=\frac{15 p}{5}-\frac{10 q}{5}+\frac{5 p q}{5}$
$=3 p-2 q+p q$
27. $\frac{28 m-20 m n}{4}$
$=\frac{28 m}{4}-\frac{20 m n}{4}$
$=7 m-5 m n$
28. $\frac{5 a^{2} b-a b^{3}}{a b}$
$=\frac{5 a^{2} b}{a b}-\frac{a b^{3}}{a b}$
$=5 a-b^{2}$
29. $\frac{15 a-21}{-3 a}$
$=\frac{15 a}{-3 a}-\frac{21}{-3 a}$
$=-5+\frac{7}{a}$
30. $\frac{y^{2}+y-7 y-18 y^{3}+11 y^{2}}{6 y}$
$=\frac{-18 y^{3}+12 y^{2}-6 y}{6 y}$
$=\frac{-18 y^{3}}{6 y}+\frac{12 y^{2}}{6 y}-\frac{6 y}{6 y}$
$=-3 y^{2}+2 y-1$
31. $x^{2} \times x^{0}+2 x-2 x^{2}$
$=x^{2}+2 x-2 x^{2}$

$$
=-x^{2}+2 x
$$

34. $\left(-48 t^{4} s-12 t^{2} s^{5}\right) \div(12 t s)$
$=\frac{-48 t^{4} s-12 t^{2} s^{5}}{12 t s}$

$$
=\frac{-48 t^{4} s}{12 t s}-\frac{12 t^{2} s^{5}}{12 t s}
$$

$$
=-4 t^{3}-t s^{4}
$$

$$
\text { 35. } \begin{aligned}
& \frac{(2+3)\left(x^{2}+3\right)}{15} \\
& =\frac{15\left(x^{2}+3\right)}{15} \\
= & \frac{x^{2}+3}{3}\left(=\frac{x^{2}}{3}+1\right)
\end{aligned}
$$

36. $\quad\left[(7 y \times x)^{2}+7 x^{2} y^{2}\right] \div 4 x y^{2}$
$=\left(49 x^{2} y^{2}+7 x^{2} y^{2}\right) \div 4 x y^{2}$
$=\frac{56 x^{2} y^{2}}{4 x y^{2}}$
$=14 x$
37. $\sqrt{49 x^{22} y^{16}}=7 x^{11} y^{8}$
38. $\sqrt{25 x^{2}-9 x^{2}} \div 4 x$
$=\frac{\sqrt{16 x^{2}}}{4 x}$
$=\frac{4 x}{4 x}$
$=1$
39. $\sqrt[3]{\left(8 d^{3}\right)^{2}}-3 d(d+2)$
$=\sqrt[3]{64 d^{6}}-3 d(d+2)$
$=4 d^{2}-3 d^{2}-6 d$
$=d^{2}-6 d$
40. $\frac{12 x \times 0}{3}$
$=\frac{0}{3}$
$=0$

A fun puzzle

Questions on p. 28

6. distance ${ }^{2}+10^{2}=12,5^{2} \quad \ldots$ Pythagoras
\therefore distance $^{2}=12,5^{2}-10^{2}$
$=156,25-100$

$$
=56,25
$$

\therefore distance $=\sqrt{56,25}$

$$
=7,5 \mathrm{~m}
$$

\therefore the ladder will need to be placed $7,5 \mathrm{~m}$ from the wall.

7. $12^{2}+\mathrm{BC}^{2}=15^{2} \ldots$ Pythagoras
$\therefore B C^{2}=15^{2}-12^{2}$
$=225-144$

$$
=81
$$

$\therefore \mathrm{BC}=\sqrt{81}$

$$
=9 \mathrm{~m}
$$

$B D=B C+C D$

$$
\therefore x=9 \mathrm{~m}+1,5 \mathrm{~m}
$$

$=10,5 \mathrm{~m}$

8.1 rectangle
$8.2 \hat{\mathrm{G}}=\hat{\mathrm{H}}=\hat{\mathrm{I}}=90^{\circ}$
8.3 a right-angled triangle
$8.4 \quad \mathrm{GJ}^{2}+\mathrm{GH}^{2}=\mathrm{HJ}^{2} \quad \ldots$ Pythagoras
$\therefore 10^{2}+24^{2}=H J^{2}$
$\therefore H^{2}=10^{2}+24^{2}$
$\therefore H J^{2}=100+576$
$\therefore \mathrm{HJ}^{2}=676$
$\therefore \sqrt{H J^{2}}=\sqrt{676}$

$$
\therefore \mathrm{HJ}=26 \mathrm{~cm}
$$

16 AREA \& PERIMETER OF 2D SHAPES

Area \& Perimeter

Exercise 16.1

1.1 Area $=\ell \times b \quad \&$

$$
\begin{array}{ll}
=40 \mathrm{~mm} \times 15 \mathrm{~mm} & =2(40)+2(15) \\
=600 \mathrm{~mm}^{2} & =80+30 \\
& =110 \mathrm{~mm}
\end{array}
$$

Perimeter $=2 \ell+2 b$
1.2 diameter $=10 \mathrm{~cm} ; \quad \therefore$ radius $=5 \mathrm{~cm}$

$$
\begin{array}{rlrl}
\therefore \text { Area } & =\pi r^{2} \quad \& & \text { Perimeter } & =2 \pi r \\
& =\pi(5)^{2} & & \\
& =2 \pi(5) \\
& =78,54 \mathrm{~cm}^{2} & & =31,42 \mathrm{~cm}
\end{array}
$$

OR

$$
=\pi(10)
$$

$$
=31,42 \mathrm{~cm}
$$

1.3 Area $=s^{2}$
$=(6)^{2}$
$=36 \mathrm{~m}^{2}$
\& \quad Perimeter $=4 \mathrm{~s}$
$=4(6)$

$$
=24 \mathrm{~m}
$$

$$
\text { 1.4 Area } \begin{aligned}
& =\frac{1}{2} \mathrm{~b} \times \perp \mathrm{h} \\
& =\frac{1}{2} \times 12 \times 5 \\
& =30 \mathrm{~cm}^{2}
\end{aligned}
$$

$$
\text { OR Area }=\frac{b \times h}{2}
$$

$$
=\frac{12 \times 5}{2}
$$

$$
=30 \mathrm{~cm}^{2}
$$

$A B^{2}=A C^{2}+B C^{2}$
Pythagoras
$A B^{2}=12^{2}+5^{2}$
$\therefore=144+25$
$=169$
$A B=\sqrt{169}$
$=13 \mathrm{~cm}$
\therefore Perimeter $=\mathrm{a}+\mathrm{b}+\mathrm{c}$

$$
\begin{aligned}
& =12+5+13 \\
& =30 \mathrm{~cm}
\end{aligned}
$$

1.5 Fraction or sector of circle missing $=\frac{36^{\circ}}{360^{\circ}}=\frac{1}{10}$
\therefore Fraction of circle $=\frac{10}{10}-\frac{1}{10}=\frac{9}{10}$
\therefore Area of $\frac{9}{10}$ of circle $=\frac{9}{10} \times \pi r^{2}$

$$
\begin{aligned}
& =\frac{9}{10} \times \pi(7)^{2} \\
& =138,54 \mathrm{~cm}^{2}
\end{aligned}
$$

Circumference of $\frac{9}{10}$ of circle $=\frac{9}{10} \times 2 \pi r$

$$
\begin{aligned}
& =\frac{9}{10} \times 2 \pi(7) \\
& =39,58 \mathrm{~cm}
\end{aligned}
$$

Total circumference of shape
= circumference of $\frac{9}{10}$ of circle $+2 \times$ radii
$=39,58+(2 \times 7)$
$=53,58 \mathrm{~cm}$
2.1 Frame A:

> Frame B:
$P=2(e+b)$
$=2(20,5+14)$
$P=2(e+b)$
$=69 \mathrm{~cm}$
$=2(18+13)$
\therefore Frame B has the smallest perimeter.
2.2 A

\therefore length of picture
breadth of picture
$=20,5 \mathrm{~cm}-2 \mathrm{~cm}-2 \mathrm{~cm}=14 \mathrm{~cm}-2 \mathrm{~cm}-2 \mathrm{~cm}$
$=16,5 \mathrm{~cm}$
$=10 \mathrm{~cm}$
\therefore Area of picture $=e \times b$
$=16,5 \mathrm{~cm} \times 10 \mathrm{~cm}$
$=165 \mathrm{~cm}^{2}$

PAPER E1

$11 / 2$ hours 100 marks

Answers on p. M13
All necessary working must be shown in its proper place with the answer.
No calculator may be used in this paper.
Diagrams are not necessarily drawn to scale.

QUESTION 1

Complete the table below.

Put ticks in the correct places to classify each number.

					$\begin{aligned} & \overline{\widetilde{0}} \\ & \underset{\sim}{0} \end{aligned}$	
-3						
4π						
$\sqrt{-7}$						
$\sqrt{36}$						

QUESTION 2 Remember:

2.1 Write down the lowest common multiple of 10 and 12.
2.2 Which is bigger: 13,2 or $\sqrt{163}$? (Explain your answer.)
(1)
2.3 How many whole numbers lie between $\sqrt{8}$ and $\sqrt{80}$?
2.4 Consider the numbers: $-7 ;-5 ;-1 ; 1 ; 3$ Using only two of the above numbers, what is the smallest product one could make?
2.5 Write down the factors of 18 .
2.6 Simplify $\frac{10^{7}}{5 \times 10^{4}}$
$2.7 \diamond$ and Δ are natural numbers and $\diamond \times \Delta=36$.
What is the largest possible value of $\diamond-\Delta$?

QUESTION 3

3.1 Simplify:

$$
\text { 3.1.1 } 1 \frac{1}{2}+3 \frac{2}{3} \quad 3.1 .2 \quad 1 \frac{5}{16} \div 2 \frac{11}{12}
$$

(3)(3)
$3.2 \mathrm{n}^{-1}$ means the reciprocal of n .
So, $5^{-1}=\frac{1}{5}$, for example.
Which of the following are true? Write down the letter(s) that correspond to all the correct statements.

A $3^{-1}+6^{-1}=9^{-1}$
B $6^{-1}-4^{-1}=2^{-1}$
C $2^{-1} \times 6^{-1}=12^{-1}$
D $10^{-1} \div 5^{-1}=2^{-1}$
(2)[8]

QUESTION 4

4.1 A pet shop sells only dogs, cats and mice in the ratio $2: 3: 30$. If there are 385 animals in total, how many cats are there in the shop?
4.2 Matthew began peeling a pile of 44 potatoes at

C a rate of 3 potatoes per minute. Four minutes later Charles joined him and peeled at a rate of 5 potatoes per minute. When they finished, how many potatoes had Charles peeled?
4.3 If $\frac{x}{y}=\frac{2}{3}$ and $\frac{y}{z}=\frac{7}{5}$ find the value of $\frac{z}{x}$.

QUESTION 5

$$
\begin{equation*}
\text { Given: } 3 x-4 x^{2}+2 x^{3}-1 \tag{1}
\end{equation*}
$$

5.1 What is the degree of the expression?
5.2 What is the coefficient of x^{3} ?
5.3 Write down the constant term.
5.4 What is the value of the expression if $x=1$?
5.5 Rearrange the expression in descending powers of x.

Copyright © The Answer Series: Photocopying of this material is illegal

QUESTION 6

Simplify:
$6.1-4 x+6 x-x$
$6.2-6 x^{2}-\left(-x^{2}\right)$
$6.3-4(x+2 y)$
$6.4 \sqrt[3]{27 x^{27}}$

$6.5-3 x^{2} y \times 4 x y^{3}$
$6.6-\left(2 x^{2}\right)^{3}$
(2)
$6.7 \frac{4 x^{4}}{16 x^{16}}$
$6.83 x-x(2 x+1)$
$6.9 \frac{6 x^{3} \times\left(-4 x^{2}\right)}{-12 x}-(2 x)^{4}$

QUESTION 7

7.1 If $a=-2$, which is the largest number in the set

$$
\begin{equation*}
\left\{-3 \mathrm{a} ; 4 \mathrm{a} ; \frac{24}{\mathrm{a}} ; \mathrm{a}^{2} ; 1\right\} \text { ? } \tag{2}
\end{equation*}
$$

7.2 Subtract: $3 x-4 y-z$

$$
\begin{equation*}
-x-3 y+z \tag{3}
\end{equation*}
$$

7.3 Multiply: $-5 x y^{2}\left(4 x^{3}-x y^{3}\right)$
7.4 Divide: $\frac{9 x^{3} y^{2}-27 x y^{4}}{-9 x y^{2}}$
(2)[9]

PAPER E1

Questions on p. E11

Remember: NO CALCULATOR

1.

$2.160<$

$$
\begin{aligned}
& 10=2 \times 5 \text { and } 12=2^{2} \times 3 \\
& \therefore L C M=2^{2} \times 3 \times 5 \\
& \text { OR } 10,20,30,40,50, \mathbf{6 0}, 70, \ldots \\
& \quad 12,24,36,48, \mathbf{6 0}, 70, \ldots
\end{aligned}
$$

2.2 (Note: No calculator allowed!

$$
\sqrt{169}=13 \quad \ldots 13^{2}=169
$$

$\therefore \sqrt{163}<13$
$\therefore 13,2$ is bigger than $\sqrt{163}<$

$2.3 \sqrt{8}<\sqrt{9}=3$ and $\sqrt{80}<\sqrt{81}=9$
\therefore The whole numbers between $\sqrt{8}$ and $\sqrt{80}$ are: 3; 4; 5; 6; 7; 8

\therefore The number of

 whole numbers $=6$ Be sure to answer the question!2.4 The smallest product
$=(-7) \times 3=-21<$
Trial \& error

The smallest will be the number furthest left on the number line!
$2.5 \quad \mathrm{~F}_{18}=1 ; 2 ; 3 ; 6 ; 9 ; 18<$
$2.6 \frac{10^{7}}{5 \times 10^{4}}=\left[\frac{10 \times 10 \times 10 \times 16 \times 10 \times 10 \times 10}{5 \times 10 \times 16 \times 16 \times 10}\right]$ $=\frac{10^{3}}{5}$
$=\frac{1000}{5}$
$=200<$

2.7

3.1.1 $1 \frac{1}{2}+3 \frac{2}{3}$
$\begin{array}{rl}3.1 .2 & 1 \frac{5}{16} \div 2 \frac{11}{12} \\ = & \frac{21}{16} \div \frac{35}{12}\end{array}$
$=\frac{3}{2}+\frac{11}{3}$
$=\frac{{ }^{3} 21}{16_{4}} \times \frac{12^{3}}{35_{5}^{\prime}}$
$=\frac{9+22}{6}$
$=\frac{31}{6}$
$=\frac{3 \times 3}{4 \times 5}$
$=5 \frac{1}{6}<$
$=\frac{9}{20}<$
3.2

A: $\frac{1}{3}+\frac{1}{6}=\frac{2}{6}+\frac{1}{6}=\frac{3}{6}=2^{-1} \neq 9^{-1} \times$
B: $\frac{1}{6}-\frac{1}{4}=\frac{2}{12}-\frac{3}{12}=-12^{-1} \neq 2^{-1} \times$
C: $\frac{1}{2} \times \frac{1}{6}=\frac{1}{12}=12^{-1} \checkmark$
D: $\frac{1}{10} \div \frac{1}{5}=\frac{1}{10} \times \frac{5}{1}=\frac{1}{2}=2^{-1}$
4.1 The number of cats $=\frac{3}{2+3+30}$ of 385

$$
\begin{aligned}
& =\frac{3}{135} \times \frac{385^{11}}{1} \\
& =\frac{3 \times 11}{1 \times 1} \\
& =33<
\end{aligned}
$$

OR Number of potatoes peeled

- in the $1^{\text {st }} 4$ minutes: $4 \times 3=12$
. . . Matthew
- \& thereafter:
$3+5=8$ per minute $\quad .$. Matthew \& Charles for the remaining
44-12 = 32 potatoes
$\therefore 4$ minutes

\therefore Number of potatoes Charles peeled $=4 \times 5=20<$
$4.3 \quad \begin{aligned} \frac{x}{y} \times \frac{y}{z} & =\frac{2}{3} \times \frac{7}{5} \ldots \begin{array}{c}\text { Note the possibility } \\ \text { of 'removing' } y \\ \text { by cancelling. }\end{array} \\ \therefore \frac{x}{z} & =\frac{14}{15} \\ \therefore \frac{z}{x} & =\frac{15}{14} \ll \begin{array}{c}\text { If fractions are equal then } \\ \text { their inverses are equal. }\end{array}\end{aligned}$

