Mathematical Literacy

CLASS TEXT \& STUDY GUIDE

Susan Nicol, et al.
3-in-1

Grade 12 Maths Literacy 3-in-1 CAPS

CLASS TEXT \& STUDY GUIDE

This Gr 12 Maths Literacy 3-in-1 study guide has been developed with meticulous focus and care. It is a highly recommended, stand-alone guide to guarantee success, caters for a wide spectrum of learners and stimulates interest and enjoyment of the curriculum content.

This book is all you need in order to prepare for the final Maths Literacy exam.

Key features:

- Easy-to-understand, step-by-step approach
- Comprehensive notes and worked examples for all 7 topics
- Exercises and 'Test your Understandings' for each topic
- Detailed answers with explanations and handy hints

THE
ANSWER
SERIES Your Key to Exam Success

GRADE

CAPS
3-in-1

Mathematical Literacy

Susan Nicol, et al.

THIS CLASS TEXT \& STUDY GUIDE INCLUDES

1 Notes and Worked Examples

2 Questions per Topic

3 Detailed Answers

CONTENTS

Exam Assessment i
Module 1: Numbers and Calculations with Numbers 1-24
Terminology and Concepts 1
Unit 1: Number formats and conventions 4
Unit 2: Operations on numbers and calculator skills 5
Unit 3: Rounding 8
Unit 4: Ratios 11
Unit 5: Proportion 14
Unit 6: Rates 19
Unit 7: Percentages 20
Answers A1-A4
Module 2: Patterns, Relationships and Representations 25-57
Terminology and Concepts 25
Unit 1: Making sense of graphs that tell a story 27
Unit 2: Patterns and relationships 29
Answers A5 - A9
Module 3: Finance 58-119
Terminology and Concept 58
Unit 1: Financial documents 64
Unit 2: Tariff systems 72
Unit 3: Income, expenditure, profit/loss, Income-and-Expenditure statements and budgets79
Unit 4: Cost price and selling price 84
Unit 5: Break-even analysis 86
Unit 6: Interest 89
Unit 7: Banking, loans and investments 93
Unit 8: Inflation 106
Unit 9: Taxation 109
Unit 10: Exchange rates 116
Answers A10-A19
Module 4: Measurement 120-160
Terminology and Concepts 120
Unit 1: Measurement systems 123
Unit 2: Measuring length and distance 123
Unit 3: Measuring mass (weight) 127
Unit 4: Measuring volume 133
Unit 5: Measuring temperature 137
Unit 6: Measuring time 138
Unit 7: Calculating perimeter, area, total surface area and volume 147
Answers A19-A31
Module 5: Maps, Plans and Representations 161-189
Terminology and Concepts 161
Unit 1: Scale 163
Unit 2: Maps 171
Unit 3: Floor, elevation and design plans 181
Unit 4: Instructions and assembly diagrams 184
Unit 5: Models 187
Answers A32 - A37
Module 6: Data Handling 190-218
Terminology and Concepts 190
Unit 1: Developing questions 194
Unit 2: Collecting data 195
Unit 3: Classifying and organising data 196
Unit 4: Summarising data 199
Unit 5: Representing data 207
Unit 6: Interpreting and analysing data 216
Answers A38 - A42
Module 7: Probability 219-228
Terminology and Concepts 219
Unit 1: Expressions of probability 220
Unit 2: Prediction 222
Unit 3: Representations for determining possible outcomes 224
Unit 4: Evaluating expressions involving probability 228
Answers A42 - A44

EXAMPLE 2 of a linear relationship NOT in direct proportion :

Sipho makes diningroom tables, chairs and cushions for a living. He has certain fixed and variable expenses to consider when pricing his goods.

Each table he makes costs him R1 200 , \qquad plus an extra R800 in variable costs per table

Each chair costs him R650, plus an extra R450 per chair. Each cushion costs him R400, plus an extra R150 per cushion.

(5) Determining the type of relationship from a graph

A linear graph that is not in direct proportion will be an increasing straight line graph that starts at a point somewhere along the y-axis (but not at the origin).

In the example of Sipho's costs of making diningroom furniture the following graph would be given :

Copyright © The Answer Series: Photocopying of this material is illegal
2.4 How much income does Jim receive per painting job?

Income $=$ R6 $000 \div 5$ jobs $=$ R1 200
2.5 How many painting jobs must Jim complete in order to:
2.5.1 break-even?

4 jobs

2.5.2 make a profit? 5 jobs

Break-even is the point of intersection of the 2 graphs. n 8 painting jobs
Profit = income - expenses

$$
=R 9600-R 7600
$$

$$
=R 2000
$$

Test Your Understanding
Answers on page A14

1. Amir wants to start a small business offering tour packages for the Rugby World Cup.
1.1 Amir lists the following monthly expenses: Telephone and fax: R20 (per tour package) Equipment: Stationery: Staff:
Rent: R3 450
R50 (per tour package)
R1 000 (per tour package sold)
R4 000
Travel agency fees: R780 (per tour package sold)
1.1.1 Calculate Amir's total fixed costs.
1.1.2 Calculate Amir's total variable costs per tour package.
1.1.3 Write an equation for Amir's total costs.
1.1.4 Study the table given below. Write down the question number and missing values.

Number of tour packages	0	1	5	20
Total costs	a	b	c	d

Copyright © The Answer Series: Photocopying of this material is illegal
1.2 Amir plans to sell the tour packages for R6 500 each.
1.2.1 Write an equation for Amir's total income.
1.2.2 Study the table given below and write down the question number and missing values.

Number of tour packages	0	1	5	20
Total income	a	b	c	d

1.3.1 Use the information from your tables in Questions 1.1.4 and 1.2.2 to draw graphs of Amir's income and costs on the same set of axes. Label the break-even point.
1.3.2 Use your graph from Question 1.3.1 to determine how many tour packages Amir must sell a month in order to break even.
1.3.3 Use your graph from Question 1.3.1 to determine the approximate profit Amir will make if he sells 6 tour packages.
2. Happiness makes wooden chairs for a living. The graph below shows his income and expenses for a month.

2.1 Use the graphs to answer the following questions.
2.1.1 Estimate how much Happiness pays in fixed expenses.
2.1.2 Give TWO examples of fixed expenses that Happiness might have.
2.2 How much does Happiness sell his chairs for?
2.3 How many chairs does Happiness need to sell in order to break even?
2.4 How much income will Happiness receive if he sells 12 chairs?
2.5 How much profit will Happiness make if he sells 15 chairs?
2.6 Which graph(s) would be affected if Happiness increased the selling price of his chair? Explain your choice.
\therefore Total estimated cost (R) :
Multiple currency $=$ unit currency \times rate

Rand $\approx £ 600 \times 20$
\approx R12 000
unit currency : multiple currency
$£: R$
with exchange rate ≈ 20
2. Now calculate the difference in the estimated total cost of Neil's holiday in London, to the actual costs.

- Tube Travel Costs $=3$ three-day tube travel cards $\times £ 21,20=£ 63,60$
- Back Packers Costs $=8$ nights $\times £ 28,30=£ 226,40$
- Meal Costs $=18$ meals $\times £ 8,50=£ 153$
- Madame Tussauds = £21,50
- London Eye = £18,10
- Thames River Cruise $=£ 19,00$
- West End Theatre Show $=£ 57,00$
\therefore Total actual cost $(£)=£ 63,60+£ 226,40+£ 153+£ 21,50+£ 18,10$

$$
\text { R1,00 }(\mathrm{ZAR})=681,07 \text { Zambian kwacha (ZMK) }
$$ $+£ 19+£ 57,00$

$$
=£ 558,60
$$

\therefore Total actual cost (R).
Multiple currency $=$ unit currency \times rate

$$
\text { Rands }=£ 558,60 \times 17,56
$$

$$
=R 9809,02
$$

Difference in Estimated and Actual Cost
= R12 000-R9 809,02
$=R 2$ 190,98

Test Your Understanding

Answers on page A19

1. Convert DZD 110,35 (Algerian dinar) to rand, if R1: DZD 9,48
2. The table alongside shows au pairs' salaries in 3 countries.

AU PAIRS' SALARIES IN THREE COUNTRIES				
Country	Salary		Exchange Rates	
United Kingdom	$£ 55$ per week		Rand/British Pound (R/£)	14,66
USA	US\$140 per week		Rand/US Dollar (R/US\$)	7,42
Netherlands	$€ 340$ per month		Rand/Euro (R/€)	9,86

2.1 You want to work as an au pair. Which country will pay you the best salary per week? Show weekly income in rand to justify your answer.
2.2 Which is the strongest currency to the rand? Give a reason for your answer.
2.3 If you were living in South Africa; which country would it be best to import goods from? Give a reason for your answer.
3. A South African couple visited Botswana and Zambia. The table below shows the exchange rate between the currencies of the two countries and the South African Rand (ZAR):

SOUTH AFRICAN RAND TO FOREIGN CURRENCY

$$
R 1,00(Z A R)=0,95 \text { Botswana pula (BWP) }
$$

3.1 The couple budgeted to pay R20,00 per person for lunch. How much is this amount in Botswana pula?
3.2 The accommodation in Zambia cost 360286 ZMK per couple per day. They paid a deposit of 1021605 ZMK to secure their accommodation. Dinner costs 85134 ZMK per person and they both had dinner at the hotel restaurant four times.
Calculate the total amount they will pay in rand at the end of their ten-day (9 nights) stay at the hotel in Zambia.
3.3 Is the Botswana Pula or the Zambian kwacha stronger against the rand?
4. Amy would like to import a sewing machine and accessories from Britain.

She is quoted the following:
Over-locker Sewing Machine: $£ 510,99$
Needles: $£ 9,50$ for a pack of 5
Thread: $£ 4,85$ per bobbin
4.1 Estimate the total cost in rand; if Amy buys the over-locker sewing machine; 10 packs of needles and 50 bobbins of thread; given the exchange rate of £1: R18,42
4.2 If Amy budgeted R15 000 for the sewing machine and accessories, would she be able to afford to import it? Show all accurate calculations.
2.1 Determine the scale factor used to illustrate the difference in size between a dinosaur and a man, assuming 1 block $=1 \mathrm{~cm}$.

Actual length of dinosaur = 9 m
Map length of dinosaur
$=15$ blocks $\times 1 \mathrm{~cm}$
$=15 \mathrm{~cm}$
Scale of map (length of dinosaur)
$=0,15 \mathrm{~m}$
\therefore Scale is $1: 60$
OR
Actual height of dinosaur $=4,2 \mathrm{~m}$
Map height of dinosaur
$=7$ blocks $\times 1 \mathrm{~cm}$
$=7 \mathrm{~cm}$
$=0,07 \mathrm{~m}$
\therefore Scale is $1: 60$
OR
Actual height of man $=1,8 \mathrm{~m}$

Map height of man
$=3$ blocks $\times 1 \mathrm{~cm}$
$=3 \mathrm{~cm}$
$=0,03 \mathrm{~m}$
\therefore Scale is $1: 60$

$=$ map length
actual length
$=\frac{0,15 \mathrm{~m}}{9 \mathrm{~m}}$
$=\frac{1}{60}$
2.2 How many times larger is the dinosaur in comparison to the man, in terms of its height?
Number of times larger $=\frac{\text { actual height of dinosaur }}{\text { actual height of man }}=\frac{4,2 \mathrm{~m}}{1,8 \mathrm{~m}}=2,33$ times

EXERCISE 1

Answers on page A32

1. If a house plan is drawn using the scale $1: 50$; determine the missing plan and actual dimensions in the table below:

Feature	Measurement on the plan $(\mathbf{c m})$	Actual measurement (metres)
Height of the roof	\mathbf{A}	$1,5 \mathrm{~m}$
Height of the doors	4 cm	\mathbf{B}
Width of the doors	\mathbf{C}	$0,8 \mathrm{~m}$
Height of big windows	$2,4 \mathrm{~cm}$	\mathbf{D}

2. The blue crane is South Africa's national bird. It appears to scale on the $5 c$ coin. They grow to about $1,2 \mathrm{~m}$ in height. The height of the blue crane on the 5 c coin is 15 mm . What is the scale of the blue crane on the coin to the actual height of the blue crane?
3. Jaydon, Nathi and Trevor (3 friends from Somerset West) want to go away for a couple of days once they have written their matric examinations. They have two options: they can either stay in Nathi's parents' house in Arniston, or they can rent a house in Hermanus (which is closer). Below is a map of the Helderberg and Overberg region:

Worked Examples

The table below shows the number of beneficiaries of the Government's Social Grants for 2013/14:

	$\mathbf{2 0 1 3 / 1 4}$
State Old Age Grant	1265
State Old Age Grant, over 75s	1285
War Veterans Grant	1285
Disability Grant	1265
Foster Care Grant	800
Care Dependency Grant	1265
Child Support Grant	295

1. Calculate the size of the sector representing the number of beneficiaries of the foster care grant.
Total number of beneficiaries
$=1265+1285+1285+1265+800+1265+295$
$=7460$
\therefore Size of sector $=$ fraction of whole $\times 360^{\circ}$

$$
=\frac{\text { number of foster care beneficiaries }}{\text { total number of beneficiaries }} \times 360^{\circ}
$$

$$
=\frac{800}{7460} \times 360^{\circ}
$$

$$
=38,61^{\circ}
$$

2. The pie chart of the Social Grants Beneficiaries for $2013 / 14$ is given below:

16,96\%
2.1 Which grant has the smallest number of beneficiaries? Child Support Grant
2.2 Calculate how many children benefit from the child support grant, if there are a total of 7460 beneficiaries for all the social grants.
Number of children benefitting $=\frac{3,96}{100} \times 7460$

$$
=295,42 \approx 295 \text { children }
$$

2.3 Determine the percentage allocated to the Foster Care Grant.

$$
\text { Foster Care Grant }=100-17,23-16,96-3,96-16,96-16,96-17,23
$$

$$
=10,7 \%
$$

SINGLE, MULTIPLE AND STACKED BAR GRAPHS

- A bar graph shows the frequency of each data value, by means of bars.
- It is used for discrete categorical data.
- Single bar graphs represent one data value per category
- Compound bar graphs include multiple and stacked bar graphs.
- Multiple bar graphs: two or more data values per category are compared and represented by bars next to each other (see Question 2 on p. 209).
- Stacked bar graphs: two or more data values per category are compared and represented by bars being stacked on top of each other. Stacked bar graphs indicate the cumulative totals per category.
- The spaces between the bars indicate the discrete nature of the data.
- The bars are equally spaced and are of the same width.
- The height of each bar represents the frequency of each category.
- There is usually a space at both the start and end of the graph.
- Categories are plotted on the \boldsymbol{x}-axis; while the frequency is plotted on the y-axis.

3. During the season the netball team scored the following number of goals in their matches.

$$
\begin{array}{llllllllll}
11 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 21 & 58
\end{array}
$$

3.1 The team goes through to the play-offs and the coach tries to determine what the team's chances are of winning. She decides to calculate their average match score by finding the mean. What impression does the value of the mean give in terms of their chances of winning the play-offs?
Mean $=\frac{202}{10}$
$=20,2$
≈ 20 goals
Mean $=\frac{\text { sum of all values in data set }}{\text { total number of values in data set }}$

Since the mean of 20 goals is very high, it would give the impression that the team's chances of winning the play-offs is good.
3.2 Which measure of central tendency would be a better indicator of the team's chances of winning the play-offs? Give a reason for your answer. Median, as it is not affected by outliers (i.e. 58)
3.3 Which data value would you choose to tell your opponents, in order to make them fearful of your team's netball ability?
I would tell them that the team scored 58 goals.
1.2 If the population was approximately 44000000 in 2008, calculate the total population figure for 2009 after a $1,73 \%$ increase.
1.3 Why do you think there was a decrease in the population growth rate from 2000 to 2002?
2. The manager at $A B C$ Cigs used the graph alongside to try to convince Timothy to accept the position at the tobacco company The manager stated:
'The graphs clearly show that there is an annual decline in the number of deaths relating to the smoking of cigarettes.'

Criticise the manager's statement with at least TWO justifications.

ANNUAL DEATHS RELATING TO THE

3. The graph below shows the percentage of males and females who started the Comrades Marathon and the number and/or percentage of males and females who finished the race.

males who finished $=8325$
emales finished $=94,2 \%$
females dropped out = 5,8\%
males who dropped out $=449$
Total Starting Field $=10700$

3.1 How many men started this Comrades Marathon?
3.2 How many females started the Comrades Marathon?
3.3 How many of the females who started the marathon, finished it?
3.4 Did a higher percentage of male or female runners drop out of this Comrades Marathon? Explain your answer and show all working out.
5.18 class intervals

$$
\begin{aligned}
& \text { Class intervals = categories } \\
& \text { e.g. } 0<d \leq 20 ; 20<d \leq 30 \text {; etc. }
\end{aligned}
$$

5.2 Total $=1+7+40+67+75+48+10+2$

$$
=250
$$

5.3 Modal class: $50<\mathrm{d} \leq 60$
5.4 Continuous, numerical data

5.5

HISTOGRAM OF DIAMETERS OF LOBLOLLY PINE TREES IN DUKE FOREST TRACT

6.1

SCATTER PLOT OF SHOE SIZES VS LENGTH OF HANDS

6.2 Yes, there is a strong positive linear correlation.

Copyright © The Answer Series: Photocopying of this material is illegal

UNIT 6:

Interpreting and analysing data

Test Your Understanding

1.1 The \% population growth decreased from approximately $3,4 \%$ in 1961 to approximately $2,2 \%$ in 1968.
1.2 Increase $=\frac{1,73}{100} \times 44000000$

$$
=761200
$$

\therefore Total population for $2009=44000000+761200$

$$
\text { = } 44761200
$$

OR Total population for 2009
$=101,73 \%$ of the population in 2008
$=\frac{101,73}{100} \times 44000000 \quad 101,73 \%=100 \%+1,73 \%$ $=44761200$
1.3 Possible reasons could include:

There could possibly have been famine, disease, drought, civil unrest or war in developing countries that could have decreased population growth.
> The generation of women who were of child-bearing age may have decided not to have children; or decided to have fewer children than the previous generation; and/or decided to focus on their careers and rather have children later in life.
2. He has split the causes of smoking-related deaths into categories and there is no value to determine the actual number of deaths from smoking.
> He cleverly arranged the bars from biggest to smallest (tallest to shortest) causing the reader to think that there is a decrease in deaths.
> There are no figures relating to actual smokingrelated deaths. The percentages indicate the part each cause forms of all smoking-related deaths.
3.1 Males who started $=8325+449$

$$
=8774
$$

$$
\begin{aligned}
& =10700-8774 \\
& =1926
\end{aligned}
$$

3.3 No. of females who finished $=94,2 \%$ of 1926

$$
\begin{aligned}
& =1814,29 \\
& =1814 \text { females }
\end{aligned}
$$

3.4 \% of males who dropped out
$=\frac{449}{8774} \times 100 \%$
$=5,1 \%$
A marginally higher percentage of females dropped out of the race - i.e. $5,8 \%$ compared to $5,1 \%$.

MODULE 7

UNIT 1:

Expressions of probability

Test Your Understanding

1. $\frac{9}{11} ; 90 \% ; 0,87 ; \frac{7}{8} ; 0,25 ; 80 \%$
$=81,82 \% ; 90 \%$; 87%; $87,5 \%$; 25%; 80%
\therefore Most probable (likely) to most improbable (unlikely)
$=90 \% ; 87,5 \% ; 87 \% ; 81,82 \% ; 80 \% ; 25 \%$
$=90 \% ; \frac{7}{8} ; 0,87 ; \frac{9}{11} ; 80 \% ; 0,25$

Always remember to answer the question using the original values given (e.g. $\frac{9}{11}$) and not the equivalent values that you worked out (e.g. 81,82\%).

