Mathematical Literacy

CLASS TEXT \& STUDY GUIDE

Susan Nicol, et al.

3-in-1

Grade 11 Maths Literacy 3-in-1 CAPS

CLASS TEXT \& STUDY GUIDE

This Grade 11 Maths Literacy 3-in-1 study guide provides a solid transition between the grounding concepts covered in Grade 10 Maths Literacy and the skills required for the final Grade 12 exams.

This comprehensive, logically organised study guide accompanies you through an extensive range of exercises and memorable pointers, as you acquire the skills to tackle real-life mathematical problems within the framework of the CAPS curriculum.

Key features:

- Easy-to-understand, step-by-step approach
- Comprehensive notes and worked examples for all 7 topics
- Exercises and 'Test your Understandings' for each topic
- Detailed answers with explanations and handy hints

This study guide is filled with content, application and self-assessment. It is ideal for both home and classroom use.

Mathematical Literacy

Susan Nicol, et al.

THIS CLASS TEXT \& STUDY GUIDE INCLUDES

1 Notes and Worked Examples

2 Questions per Topic

3 Detailed Answers

CONTENTS

Exam Assessment i
Module 1: Numbers and Calculations with Numbers 1-25
Terminology and Concepts 1
Unit 1: Number formats and conventions 4
Unit 2: Operations on numbers and calculator skills5
Unit 3: Rounding 8
Unit 4: Ratios 11
Unit 5: Proportion 14
Unit 6: Rates 19
Unit 7: Percentages 21
Answers A1-A4
Module 2: Patterns, Relationships and Representations 26-56
Terminology and Concepts 26
Unit 1: Making sense of graphs that tell a story 28
Unit 2: Patterns and relationships 31
Answers A4 - A9
Module 3: Finance 57-101
Terminology and Concepts 57
Unit 1: Financial documents 63
Unit 2: Tariff systems 74
Unit 3: Income, expenditure, profit/ 79
Unit 4: Cost price and selling price 83
Unit 5: Break-even analysis 84
Unit 6: Interest 87
Unit 7: Banking, loans and investments 90
Unit 8: Inflation 96
Unit 9: Taxation 97
Unit 10: Exchange rates 100
Answers A9-A15

Substitute the values into the given formula and solve for the unknown.

Number of washers \times time taken $=12$

$$
\begin{aligned}
6 \times \mathbf{Y} & =12 \\
\mathbf{Y} & =12 \div 6 \\
\mathbf{Y} & =2 \text { hours }
\end{aligned}
$$

(4) Drawing graphs from tables

The graph of an indirect/inverse proportion relationship is a decreasing curved line (known as a hyperbolic curve in mathematical terms).

In the example of the time taken to valet a freight truck, the following graph can be drawn, based on the information in the table below:

The following points will be plotted
$(1 ; 12) ;(2 ; 6)$;

TIME TAKEN TO VALET A FREIGHT TRUCK

Miranda and her large, extended family love spit braais, but they are expensive for just one person to hire. Therefore, her family agrees to contribute to the cost of hiring the spit braai, which costs R1 500.

5 Determining the type of relationship from a graph

An indirect/inverse proportion graph will be a decreasing curved line (hyperbolic curve) that will not intersect the x - nor y-axis. A constant product will always exist between the independent and dependent variables.
In the example of Miranda and her family hiring the spit braai, the following graph would be given:

COST PER PERSON OF HIRING THE SPIT BRAA

Therefore, since this graph is a hyperbolic curve with a constant product of R1 500 this graph represents an indirect/inverse proportion relationship.
3. 7 hours to minutes
$7 h \times 60$
$=420 \mathrm{~min}$
4. 500 seconds to minutes and seconds
$500 s \div 60$
$=8 \mathrm{~min}+0,33 \mathrm{~min}$
$=8 \mathrm{~min}+(0,33 \mathrm{~min} \times 60 \mathrm{~s})$
$=8 \mathrm{~min}+20 \mathrm{~s}$
5. 203 hours to days and hours
$203 h \div 24$
$=8$ days $+0,4583$ days
$=8$ days $+(0,4583$ days $\times 24 \mathrm{~h})$
$=8$ days +11 h
6. 1911 days to years, weeks and days

1911 days $\div 365$
$=5$ years $+0,2356$ years
$=5$ years $+(0,2356$ years $\times 365)$
$=5$ years +86 days
$=5$ years +86 days $\div 7$
$=5$ years +12 weeks $+0,2857$ weeks
$=5$ years +12 weeks $+(0,2857$ weeks $\times 7$ days $)$
$=5$ years +12 weeks +2 days

[^0]
Working with Time in Context

- Always make sure that you are working in the same units of time - often it is easiest to convert to the smallest unit of time.
- When working with elapsed time, subtract the second time recording from the first time recording - you may need to 'borrow' units from a bigger time unit.
- Speed: the rate at which a person or object covers a distance in a specified period of time.

- The graph of speed is drawn when distance is plotted over time, where the steeper the gradient of the straight line, the greater the speed.
i.e.

- Calendars and Timetables are a useful way to tabulate time and specific events in time e.g. a study timetable and a school calendar.
- Be sure to read the keys carefully when interpreting calendars and timetables.

Worked Examples

1. How much time has elapsed from 3.15 am to 6.40 pm ?
$3 \mathrm{am} \rightarrow 6 \mathrm{pm}: 15$ hours
$0: 15 \rightarrow 0: 40: 25$ minutes
$\therefore 15$ hours and 25 minutes

Bar Scales

- Bar scales are also known as linear scales.

STEP 1
Use your ruler to accurately measure the length of the bar scale.

2 cm on the map represents 40 km in reality.

STEP 2 Write the bar scale measurements in the form of a numerical scale; i.e. 1:...

Divide both sides
by the number
on the left to get the ratio 1 :

$$
\frac{2}{2}: \frac{4000000}{2}
$$

Once both measurements are in

$$
1: 2000000
$$ the same units, we drop the units and only work with the ratio numbers.

STEP 3 Use your ruler to accurately measure the distance between Louis Trichardt and Musina

4 cm on the map

STEP 4 Use the numerical scale (from Step 2) and the distance between the two points on the map (from Step 3); to calculate the actual distance.

Actual distance $=$ map distance \times scale factor
$=4 \mathrm{~cm} \times 2000000$
$=8000000 \mathrm{~cm}$
$=80 \mathrm{~km}$

Check that the units are the same in your answer and the question.

- Examples of bar scales:
100 kilometres
$\begin{array}{llllll}0 & 5 & 10 & 15 & 20 & 25\end{array}$ metres

0		100 kilometres
0	50	100 kilometres

$\begin{array}{lll}0 & 50 & 100 \\ \text { kilometres }\end{array}$
$\begin{array}{lllllll}0 & 25 & 50 & 75 & 100 & 125\end{array}$ metres

- By measuring the map distance between two points and comparing this distance with the bar scale of the map, you are able to work out the distance between the two points in reality.
- In contrast to a number (numerical) scale, where no units are included, the units are a very important part of a bar scale. This is because the bar scale shows a very specific relationship between the measured length of the lines or segments on the bar scale and actual length.

Kallie is a tractor salesman and often travels between the farmers of Louis Trichardt and Musina. Use the map and bar scale to determine the distance, 'as the crow flies', that Kallie travels between the two towns. Give your answer in km.

40 km

Factors that Affect the Impression Created by a Graph

－The way in which a graph is drawn alters the impression of the data being represented．
－The following factors affect the impression created by a graph：
（1）Scale of the axes
－the more spread out the axes，the larger the changes appear．
（2）Point at which the axes cross
－by excluding the section of the axis where no points appear （i．e．breaking the axis），it＇zooms in＇on the relevant data points．
－this alters the impression of the graph by highlighting small changes．

GRAPH A
PRICE OF PETROL OVER 6 MONTHS

GRAPH A

－ \boldsymbol{Y}－axis scale：increments of 0,1 ． \therefore the axis is more spread out than Graph B．
－There is a break in the y－axis（ \langle ） so the graph starts at 12，20． It＇zooms in＇on the data values．

This creates an impression that the petrol price has increased substantially over 6 months，as the minor／small changes in the price are highlighted．

GRAPH B
PRICE OF PETROL OVER 6 MONTHS

GRAPH B
Y－axis scale：increments of 0,25 \therefore the axis is more clustered together than Graph A．
－There is a break in the y－axis（ \langle ）， but it ranges from 11，75 to 13，5． It＇zooms out＇on the relevant data values．
This creates the impression that the petrol price has only risen slightly over the last six months，as the small changes are not highlighted．

Answers on page A34
1．According to data published by Crime Stats $S A$ ：
56616 motor vehicles were stolen in South Africa during 2014
55090 motor vehicles were stolen in South Africa during 2015
The four provinces with the largest number of motor vehicle thefts were the Eastern Cape，Gauteng，KwaZulu－Natal and the Western Cape．This information is illustrated in the pie charts below：

MOTOR VEHICLES STOLEN MOTOR VEHICLES STOLEN
IN SOUTH AFRICA IN 2014 IN SOUTH AFRICA IN 2015

Use the pie charts to answer the following questions：
1．1 In which province was the same percentage of motor vehicles stolen during both periods？
1．2 Determine the percentage of motor vehicles stolen in the Western Cape during 2015.

1．3 Which province showed the largest percentage increase in motor vehicles stolen
from 2014 to 2015？
1．4 Calculate the percentage increase in motor vehicles stolen in Gauteng from 2014
to 2015.
1．5 Calculate the total number of vehicles that were stolen in KwaZulu－Natal during
to 2015.
1.5 Calculate the total number of vehicles that were stolen in KwaZulu－Natal during 2014．Give the answer rounded off to the nearest whole number．

1．6 Calculate the size of the sector of＇Other Provinces＇in 2015.

KEY
A
B
Castern Cape
C
Kauteng
D
E
Western Cape

［Source：www．crimestatssa．com］

A PROBABILITY SCALE

Given the experiment of tossing a coin, answer the following questions:

1. Determine the possible outcomes of the experiment.

Possible outcomes are 'heads' or 'tails'.
2. Describe the chance of the coin landing on 'legs'.

The chance is described as 'impossible'.

> You can either get 'heads' or 'tails' - but no 'legs' exist!

3. Determine the probability of tossing 'heads'. Give your answer as a percentage, fraction and decimal.

Probability of tossing 'heads' is equally likely.
$\therefore 50 \% ; \frac{5}{10}=\frac{1}{2} ; 0,5$

Calculating Probability

- The universal symbol for calculating the probability of an event is P (event).
- The formula used for calculating probability is:

```
probability (event) = number of favourable outcomes total number of possible outcomes
```


.

Worked Examples

Given the experiment of rolling a die, calculate the probability of rolling:

1. $a^{\prime} 3$ '.

$$
P(3)=\frac{1}{6}(=0,17=16,67 \%)
$$

2. an odd number.
NOTE! Rather leave your answer as a
$P($ odd number $)=\frac{3}{6}$

$$
=\frac{1}{2} \quad(=0,5=50 \%)
$$

Odd numbers $=1 ; 3 ; 5$
3. an ' 8 '.

$$
\begin{aligned}
P(8) & =\frac{0}{6} \\
& =0(=0=0 \%)
\end{aligned}
$$

4. a number from 1 to 6 .

$$
\begin{aligned}
P(1 ; 2 ; 3 ; 4 ; 5 ; 6) & =\frac{6}{6} \\
& =1(=1,0=100 \%)
\end{aligned}
$$

2.1 1 dozen = 12 oranges = R9,00
$\therefore 1$ orange $=\mathrm{R} 9,00 \div 12=\mathrm{R} 0,75$
2.2 six oranges $=\frac{1}{2}$ dozen $=R 6,00$
$\therefore 1$ dozen $=$ R6,00 $\times 2=\mathrm{R} 12,00$
\therefore Profit $=$ R12,00 $-\mathrm{R} 9,00=\mathrm{R} 3,00$
2.3 Number of dozen oranges $=108 \div 12=9$ \therefore Cost of 9 dozen $=9 \times \mathrm{R} 9,00=\mathrm{R} 81,00$
3.

METHOD 1 Inverse $\times \mathrm{OR} \div$ operations

$$
\begin{gathered}
\text { tilers }: \text { hours } \\
\times 3\left(\begin{array}{ll}
6 & : 120 \\
? & : 40
\end{array}\right) \div 3
\end{gathered}
$$

\therefore Number of tilers $=6 \times 3=18$

or

METHOD 2 Table with constant product

\therefore Number of tilers $=720 \div 40=1$
4.1 Daily earnings $=8,5 h \times R 12,50=R 106,25$
4.2 Number of hours worked $=\mathrm{R} 218,75 \div \mathrm{R} 12,50$

$$
=17,5 \mathrm{~h}
$$

5.1

Amount of animal feed (kg)	12	24	36	48	60
Size					

Notice the constant ratio of $\frac{20}{12}=\frac{40}{24}=\frac{60}{36}=1,67$

REMEMBER
Extend the straight line to the origin!

UNIT 6:

Rates

1. $R 149,99 \div 24=R 6,25$
2. $R 82,80 \div 12=R 6,90$
3. Speed $=\frac{\text { distance }}{\text { time }}$

$$
\begin{aligned}
& =\frac{21,1 \mathrm{~km}}{2 \mathrm{~h}} \\
& =10,55 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

4. Unit rate $=75 \mathrm{ml} \times 2$

$$
=150 \mathrm{ml} \text { per } \mathrm{kg} \text { meat }
$$

. Yoghurt needed for $3,7 \mathrm{~kg}=3,7 \mathrm{~kg} \times 150 \mathrm{ml}$ $=555 \mathrm{ml}$
5. Dozen eggs: $\frac{\mathrm{R} 23,99}{12 \text { eggs }}=\mathrm{R} 1,999 / \mathrm{egg}$

18 eggs: $\frac{\text { R34,29 }}{18 \text { eggs }}=$ R1,905/egg
$\therefore 18$ eggs is cheaper
6. \quad Time $=\frac{\text { distance }}{\text { speed }}$
$=\frac{128 \mathrm{~km}}{95 \mathrm{~km} / \mathrm{h}}$
$=1,35$ hours (1 hour 21 minutes)
7. Unit rate $=\frac{\mathrm{R} 1350}{1054 \mathrm{~kW}}=\mathrm{R} 1,28 / \mathrm{kW}$
\therefore Cost of $750 \mathrm{~kW}=\mathrm{R} 1,28 \times 750 \mathrm{~kW}$
$=\mathrm{R} 960$

3.3 Experimental probability $=\frac{145}{150}=96,67 \%$
3.4 Yes, the drug test is reliable as the theoretical and experimental probabilities are very, very close.

UNIT 3:

Representations for determining possible outcomes

Test Your Understanding

1.1 SPINNER 1: SPINNER 2: Possible outcomes

1.3.2
(a) $P(R 10000)=\frac{1}{8} \quad(=0,125=12,5 \%)$
(b) $P(R 2000)=\frac{2}{8}=\frac{1}{4} \quad(=0,25=25 \%)$
(c) $P(R 0)=\frac{2}{8}=\frac{1}{4} \quad(=0,25=25 \%)$
2.138 learners $\quad 2.2 \quad 32$ girls
2.343 boys in Grade $11 \quad 2.4 \quad 88$ learners in Grade 11

$$
\text { 2.5.1 } \mathrm{P}(\text { girl })=\frac{45}{88} \quad(=0,511=51,14 \%)
$$

2.5.2 $\quad \mathrm{P}($ Core Maths $)=\frac{38}{88}=\frac{19}{44}(=0,4318=43,18 \%)$ 2.5.3 P (girl taking Maths Lit) $=\frac{32}{88}$

$$
=\frac{4}{11}(=0,3636=36,36 \%)
$$

2.5.4 $P($ not Maths Lit $)=P($ Maths $)=\frac{38}{88}$

$$
=\frac{19}{44}
$$

$$
(=0,4318=43,18 \%)
$$

3.1

Child 1
Child 2

3.2 Possible outcomes:
(boy; boy; boy) (boy; boy; girl) (boy; girl; boy) (boy; girl; girl) (girl; boy; boy) (girl; boy; girl) (girl; girl; boy) (girl; girl; girl)

A37
3.3.1 $\quad P($ boy $)=\frac{1}{2} \quad(=0,5=50 \%)$
3.3.2 $P\left(\right.$ boy for $2^{\text {nd }}$ child $)=\frac{1}{2} \quad(=0,5=50 \%)$
3.3.3 $\mathrm{P}(3$ boys $)=\frac{1}{8} \quad(=0,125=12,5 \%)$
3.3.4 $\mathrm{P}(1$ boy and 2 girls $)=\frac{3}{8} \quad(=0,375=37,5 \%)$

NOTE! This means any order of 1 boy and 2 girls Possible outcomes = (boy; girl; girl) $O R$ (girl; boy; girl) $O R$ (girl; girl; boy) $=3$
3.3.5 P (first boy, then 2 girls $)=\frac{1}{8} \quad(=0,125-12,5 \%)$

4.1

		Would buy this flavour of coffee	Would not buy this flavour of coffee	Total
Gender	Male	27	23	$\mathbf{5 0}$
	Female	21	29	$\mathbf{5 0}$
	Total	$\mathbf{4 8}$	52	$\mathbf{1 0 0}$

4.2100 people
4.3 $\mathrm{P}($ would buy the coffee $)=\frac{48}{100}(=0,48=48 \%)$
4.4 P (male who would not buy the coffee)
$=\frac{23}{100}(=0,23=23 \%)$
4.5 P (would buy the coffee) $=\frac{48}{100} \times 100 \%=48 \%$

Number of people who might buy the coffee
$=48 \% \times 30=\frac{48}{100} \times \frac{30}{1}=14,4 \approx 14$ people
4.6 No. More than $50 \%\left(\frac{52}{100}\right)$ of the people who tried the coffee responded that they would not buy the coffee.
1.2.1 8 possible outcomes
1.2.2 $P(R 5000$ for spinner 1 only $)=\frac{1}{2}(=0,5=50 \%)$
1.2.3 $P(R 1000 ;$ halve $i t)=\frac{1}{8} \quad(=0,125=12,5 \%)$
1.3.1

Possible outcomes	Rand value
$R 1000 ;$ double up	$R 1000 \times 2=R 2000$
$R 1000 ;$ add $R 1000$	$R 1000+R 1000=R 2000$
$R 1000 ;$ halve it	$R 1000 \div 2=R 500$
$R 1000 ;$ lose it all	$R 1000-R 1000=R 0$
$R 5000 ;$ double it	$R 5000 \times 2=R 10000$
$R 5000 ;$ add R1 000	$R 5000+R 1000=R 6000$
$R 5000 ;$ halve it	$R 5000 \div 2=R 2500$
R5 000; lose it all	$R 5000-R 5000=R 0$

[^0]: Answers on page A21
 Convert the following:

 1. 4 hours to minutes
 2. 35 weeks to days
 3. 24 minutes to hours
 4. 1000 minutes to hours and minutes
 5. 3333 seconds to minutes and seconds
 6. 720 seconds to minutes
 7. 10975 days to years, weeks and days
