Mathematical Literacy

CLASS TEXT \& STUDY GUIDE

S. Nicol \& L. van Rensburg

3-in-1

Grade 10 Maths Literacy 3-in-1 CAPS

CLASS TEXT \& STUDY GUIDE

This Grade 10 Maths Literacy 3-in-1 study guide offers both learners and teachers a comprehensive and innovative approach to Maths Literacy.

The stimulating easy-to-follow material and clear illustrations guide you effortlessly through each topic. Graded exercises placed strategically throughout this study guide, allow you to systematically bolster your knowledge of new concepts and exam techniques.

Key features:

- Easy-to-understand, step-by-step approach
- Comprehensive notes and worked examples for all 7 topics
- Exercises and 'Test your Understandings’ for each topic
- Detailed answers with explanations and handy hints

CAPS
3-in-1

Mathematical Literacy

S. Nicol \& L. van Rensburg

THIS CLASS TEXT \& STUDY GUIDE INCLUDES
1 Notes and Worked Examples

2 Questions per Topic

3 Detailed Answers

CONTENTS

Exam Assessment i
Module 1: Numbers and Calculations with Numbers 1-41
Terminology and Concepts 1
Unit 1: Number formats and conventions 4
Unit 2: Operations on numbers and calculator skills 7
Unit 3: Rounding 17
Unit 4: Ratios 22
Unit 5: Proportion 27
Unit 6: Rates 33
Unit 7: Percentages 38
Answers A1 - A6
Module 2: Patterns, Relationships and Representations 42-67
Terminology and Concepts 42
Unit 1: Making sense of graphs that tell a story 44
Unit 2: Patterns and relationships 47
Answers A7 - A10
Module 3: Finance 68-102
Terminology and Concepts 68
Unit 1: Financial documents 72
Unit 2: Tariff systems 78
Unit 3: Income, expenditure, profitloss, Income-and-Expenditure statements and budgets 84
Unit 4: Interest 90
Unit 5: Banks, loans and investments 91
Unit 6: Taxation 99
Answers A10 - A14
Module 4: Measurement 103-129
Terminology and Concepts 103
Unit 1: Measurement systems 105
Unit 2: Measuring length and distance 105
Unit M: Measuring volume
Unit 5: Measuring 112
Unit 6: Measuring time 117
Unit 7: Calculating perimeter and area 123
Answers A14-A19
Module 5: Maps, Plans and Representations 130-148
Terminology and Concepts 130
Scale 1
Unit 2: Maps 136
Unit 3: Floor, elevation and design plans 140
Unit 4: Instructions and assembly diagrams 142
Unit 5: Models 145
Answers A19 - A21
Module 6: Data Handling 149-171
Terminology and Concepts 149
Introduction 152
Unit 1: Developing questions 153
Unit 2: Collecting data 153
Unit 3: Classifying and organising data 156
Unit 4: Summarising data 159
Representing data 161
Unit 6: Interpreting and analysing data 170
Answers A21 - A24
Module 7: Probability 172-185
Terminology and Concepts 172
3Unit 2: Prediction
177Unit 3: Representations for determining possible outcomes
Answers A24 - A25

Simplifying ratios

- Ratios must always be written in their simplest form This is done by dividing both values in the ratio by the highest common factor.
Example:
(a)

$$
\div\binom{ 25: 625}{1: 25} \div \frac{\div}{25}
$$

(b)

$$
\div 4\binom{16: 28}{4: 7} \div 4
$$

- The values in a final ratio must always be given as whole numbers in their simplest form. When ratios are given in decimal form, multiply through by whichever multiple of 10 gets rid of the decimals and simplify

Example:

Express the ratio 5,4:9,66 in its simplest form

5,4:9,66

$=540: 966 \rightarrow$ make both decimals whole numbers by multiplying both sides by 100
$=90: 161 \rightarrow$ simplify by dividing both sides by 6

$$
\begin{array}{r}
\times 100\left(\begin{array}{l}
5,4: 9,66 \\
540: 966 \\
90: 161
\end{array}\right) \times 100
\end{array}
$$

- When fractions are given as ratios, find a common denominator and convert both fractions. Since the denominators are now the same, the numerators are equivalent. \qquad \longrightarrow

Example:

Express $\frac{3}{4}: \frac{2}{3}$ as a ratio in its simplest form.

$$
\begin{aligned}
\frac{3}{4}: \frac{2}{3}=\frac{9}{12}: \frac{8}{12} \rightarrow & \text { find a common denominator and convert } \\
= & 9: 8 \rightarrow
\end{aligned}
$$

Worked Examples

1. Write down any equivalent ratio for the following:
$1.14: 3$
$\therefore 8: 6$
Multiply both values by the same number.
$1.260: 128$
$\therefore 15: 32$
Divide both values by the same number.
2. Express the following ratios in their simplest form:
2.1 Sipho's mass of 65 kg to Bongani's mass of 80 kg .

$$
\begin{aligned}
& 65: 80 \\
= & 13: 16
\end{aligned}
$$

\square管 $\frac{65}{80}=\frac{13}{16}$
2.2 Lindiwe's age of 38 to her mother's age of 57 .

$$
\begin{array}{r}
38: 57 \\
=\quad 2: 3
\end{array}
$$

$$
-
$$

$$
\div 19\binom{38: 57}{2: 3}
$$

$$
=19 \text { (divide by the HCF). }
$$

2.3 Thandi's height of 175 cm to Ben's height of 125 cm .

175:125

3. Express the following ratios in their simplest form.
$3.10,72: 0,36=72: 36 \ldots \times 100$ to make both numbers whole numbers

$$
=2: 1 \quad \ldots \text { simplify }
$$

$$
\begin{array}{r}
\times 100\left(\begin{array}{c}
0,72: 0,36 \\
72: 36 \\
2: 1
\end{array}\right) \times 100 \\
\div 36\left(\begin{array}{c}
\\
2
\end{array}\right.
\end{array}
$$

$3.22,4: 48=24: 480 \ldots \times 10$ to make both numbers whole numbers

$$
=1: 20 \quad \ldots \text { simplify }
$$

$$
\begin{gathered}
\times 10\left(\begin{array}{c}
2,4: 48 \\
24: 480 \\
1: 24
\end{array}\right) \times 10 \\
\div 24
\end{gathered}
$$

4. Study the following histogram and answer the questions that follow.

4.1 Explain, in your own words what this graph is about.
4.2 Which age group had the most number of entrants? How many entrants?
4.3 Which age group had the least number of entrants? Explain why there are so few.
4.4 How many people entered the fun run?

UNIT 2

PATTERNS AND RELATIONSHIPS

In this unit formal relationships between quantities are addressed.
The 3 formal relationships between two sets of values that need to be understood are:

- when two sets of quantities have a constant (fixed) relationship.
- when two sets of quantities have a linear relationship (including direct proportion).
- when two sets of quantities have an indirect/inverse proportion relationship.

In order to understand and be able to use, create and identify the above relationships, knowledge of the following features is essential:

Features of patterns

Independent and dependent variables

A table is often used to display patterns. The two sets of values in each row are related to each other and are called variables, namely the independent and dependent variable.

The independent variable (usually represented on the x-axis) is the one you choose and the dependent variable (usually represented on the y-axis) is the one that depends on the chosen (independent) variable.

Example:

The following table illustrates the cost of hiring a cottage per day:

The 'Number of days' is the independent variable and the 'Total cost' is the dependent variable. This is because the cost of hiring a cottage will depend on the number of days you hire it. Also, note that the 'Number of days' will be plotted on the x-axis, while the 'Total cost' will be plotted on the y -axis.
Note: The independent variable must always be
written in the top row of the table and the
dependent variable in the second row.

Discrete or continuous variables

Variables are classified as discrete when the values can only be whole numbers, e.g. number of people, the number of cars, etc. while continuous variables have values that are able to be any type of number, whole numbers, fractions or decimals, e.g. height, weight, temperature (any unit of measurement), etc.

Data is classified as discrete or continuous according to the independent variable.

(2) Reading off values from a graph

If the question is asking for the corresponding dependent variable locate the given independent variable on the x-axis and travel vertically upwards until you hit the graph. Now at that point, travel horizontally across until you reach the y-axis. Now read off the dependent variable value.
If the question is asking for the corresponding independent variable, locate the given dependent variable on the y-axis and travel horizontally across until you hit the graph. Now at that point, travel vertically downwards until you reach the x-axis. Now read off the independent variable value.

Consider the graph showing the cost of hiring the wedding venue on the previous page and answer the questions that follow:
Q: What would it cost to hire the wedding venue for 6 hours?
A: R25 000

Q: What is the maximum number of hours that the wedding venue could be hired for?

A: 8 hours
Cost of wedding venue vs time

Answers on page A7

1. Jim hires a car for the day. The car rental company charges him R1 200 for the day (08:00-17:00) for an unlimited number of kilometres.
1.1 Construct a table to represent the number of hours Jim can hire the car for versus the cost of the car.
1.2 Use the table that you constructed in Question 1.1, to determine a formula for the cost of hiring the car for the day.
1.3 Use the table that you constructed in Question 1.1, to draw the graph of the 'Cost of hiring the car' versus the 'Number of hours'.
2. Easy Talking cellphone company is launching a special that you only pay R50 per day, for an unlimited number of phone calls. This relationship can be represented in the table below:

Number of phone calls	0	1	5	12	20	b
Cost of phone calls (in Rands)	50	50	50	50	a	50

2.1 What type of relationship is represented in the table?
2.2 Determine a formula to represent the 'Cost of phone calls' using Easy Talking cellphone company.
2.3 Determine the missing values \mathbf{a} and \mathbf{b} in the table.
3. Joan goes on holiday to a hot springs resort. They charge R50 per day for the unlimited use of their hot springs facilities. This can be illustrated in the graph below:

3.1 How much would it cost Joan to use the hot springs for 4 hours?
3.2 If Joan had R250, for how many days could she use the hot springs?

When investigating the most appropriate way to package cans and/or boxes for optimal use of space and the most cost effective way to package a number of cans and/or boxes, the following important things need to be remembered:

- Practicality

E.g. a box that contains 48 cans that is 48 cans long and 1 can wide, would be very difficult to carry compared to a box that is 8 cans long and 6 cans wide

- Optimal use of space

The cans must be packed properly so as to ensure that the largest number of cans fit in the box, but the box must still be able to close. If the box doesn't close properly, it will take up more room than it should, reducing the amount of available space. This will increase transport costs as less boxes can fit in the truck or shipping container.

- Cost-effectiveness

Packaging materials, such as cardboard, can be expensive. Therefore you need to find the smallest container that you can pack the cans in.
Example: Pattern 1 and 2 shown below waste a lot of space and the lids cannot close properly.

Pattern 1
In comparison, Pattern 3 maximises the available space and is therefore more cost-effective and practical to transport.

Pattern 3

Worked Examples

1. Practical method:

How many tins of coffee could fit into this box if the diameter of each tin is 100 mm and its height is 120 mm ?

- Place the first tin in one of the corners and keep on adding tins next to one another, until no more tins can fit. This will give you the maximum number of tins that you can fit across the length of the box, as shown below:

$\therefore 5$ tins fit across the length of the box.

Even though there is still space left, we would only be able to fit 5 tins across the length of the box.

categorical data	data that is generally descriptive in nature and can be classified into categories; data that cannot be measured e.g. colour; gender; shoe size
numerical data	data that has numerical values and can be quantified e.g. time; age; area
discrete data	numerical data that can be counted and only includes whole numbers e.g. number of puzzles pieces; number of building blocks
continuous data	numerical data that can be measured and includes any whole numbers, fractions or decimals e.g. length of a puzzle; weight of the building blocks
class intervals	the subdivision of data into intervals / groups; with each class interval having the same class width in order to be comparable e.g. class intervals of 10 data points: 10-19; 20-29; 30-39; etc.
class width	the number of data points (size) in the class interval i.e. class width = upper class boundary - lower class boundary
tally	a vertical stripe which represents the occurrence of a particular data value in a data set; and is a way of keeping count
tally table	a table whereby each data value is represented by a tally; in order to keep track of how often a piece of data appears in the raw data
frequency	the number of times something happens or appears
frequency table	a tally table which also includes a frequency column, whereby the frequencies of each data value are written in numerical format, together with the summed total of all the frequencies

a value that provides an indication of the middle or c entre of the data; and is a benchmark value again which to measure and compare the other values in the data set, as it is representative of the majority of the values in the data set

the 'average' of a numerical data set; and is a measure of central tendency
i.e. mean $=\frac{\text { sum of all values in data set }}{\text { total number of values in data set }}$
the middle value of an ordered, numerical data set; and is a measure of central tendency
i.e. for an even-numbered data set Data must first be
arranged in median = sum of two 'middle' data values ascending order
the data value(s) that occur(s) most frequently in a data set; and is a measure of central tendency
e.g. 1; 2; 2; 2; $3 ; 5 \ldots 2$ is the mode
when two data values occur most frequently in a data set e.g. 12; $3 ; 6 ; 3 ; 9 ; 6 ; 11 \ldots$ bimodal data as 3 and 6 occur most frequently
a value that provides an indication of how 'spread out' the data is (i.e. whether the data values are very close together/clustered or whether they are very far apart/dispersed)

> Range is a measure of spread.
the difference between the highest and lowest values in a data set; and is a measure of spread
i.e. range = highest value - lowest value

- Numerical data refers to data consisting of quantities or numerical values.
- Examples: measurements e.g. length, height, area, volume, mass, speed, time, temperature, rainfall, humidity, sound levels, cost, members, ages, etc.
- Numerical data can be further classified into discrete data or continuous data.

Discrete data is a set of values that can be counted, e.g.

- the number of children in a family
- the number of cars in a parking lot
- the number of people standing in a queue

Continuous data is data that you measure, e.g.

- the height of a learner
- the mass of a learner
- the time taken to run a race
- Therefore, data can be classified as follows:

[^0] recorded is limited by the measuring instrument being used, e.g.

- It is possible to record an individual's height as 1,8 metres or 1,79 metres or 1,785 metres.
- It is possible to record an individual's mass as 75 kg or $74,53 \mathrm{~kg}$ or $74,538 \mathrm{~kg}$.
- It is possible to record a lap time as 2 minutes or
 1 minute 59 seconds or 1 minute 59,4 seconds or 1 minute 59,432 seconds

Organising data

To organise collected data we use tallies and frequency tables.
Assume you have the following set of data:

$1^{\text {st }}$ questionnaire:	yes	yes	yes	yes	no	no	no	yes	no
$2^{\text {nd }}$ questionnaire:	yes	yes	no	no	yes	yes	yes	yes	yes

Tally tables

- As we go through each questionnaire, we put a vertical line (a tally) next to the appropriate answer (Yes/No).
- The responses of the questionnaires would be organised in a tally table as follows:
$1^{\text {st }}$ questionnaire
$2^{\text {nd }}$ questionnaire

Answer	Tally
YES	HH
NO	11 II

The tallies are grouped into fives - each count is represented by a vertical line. I/II represents 4 and the fifth line is drawn horizontally through the previous $4 . .$. HH to represent $5 \rightarrow$ this makes the responses easier to count.

Frequency tables

- Another column is added to the tally table, whereby the frequency of the tallies is written in numerical form.
- The responses of the questionnaires combined would be organised in a frequency table as follows:

Answer	Tally	Frequency	成
YES	HIH H1H II	12	$\begin{gathered} 1111111 \\ 5+5+2=12 \end{gathered}$
NO	H1H	6	
	Total	18	

\rightarrow There are 360° in a circle, so to work out the angle of the sector, multiply the fraction by 360° :

$$
\begin{aligned}
\text { angle } & =\frac{1}{3} \times 360^{\circ} \\
& =120^{\circ}
\end{aligned}
$$

> In one step:
degrees of angle $=\frac{\text { money spent on shirt }}{\text { total amount spent }} \times 360^{\circ}$

$$
\begin{aligned}
& =\frac{\mathrm{R} 200}{\mathrm{R} 600} \times 360^{\circ} \\
& =120^{\circ}
\end{aligned}
$$

Repeat the process to find the angle of the sectors for each of the other items:
DVD $=\frac{150}{600} \times 360^{\circ}$
$C D=\frac{150}{600} \times 360^{\circ}$
airtime $=\frac{100}{600} \times 360^{\circ}$
$=90^{\circ}$
$=90^{\circ}$

$$
=60^{\circ}
$$

, Always check that your sector angles add up to 360° !

$$
120^{\circ}+90^{\circ}+90^{\circ}+60^{\circ}=360^{\circ}
$$

> Pie chart showing how Siya spent his money

So remember: To calculate the size of a sector angle in degrees:

$$
\frac{\text { category value }}{\text { total value }} \times 360^{\circ}
$$

Worked Examples

40:
The following pie chart was constructed from collecting data from 240 learners:

1. Calculate the angle of each sector of the pie chart:
blue: 5% of $360^{\circ}=\frac{5}{100} \times 360^{\circ}=18^{\circ}$
brown: 80% of $360^{\circ}=\frac{80}{100} \times 360^{\circ}=288^{\circ}$
green: 5% of $360^{\circ}=\frac{5}{100} \times 360^{\circ}=18^{\circ}$
other: 10% of $360^{\circ}=\frac{10}{100} \times 360^{\circ}=36^{\circ}$
Check your answer to see if it adds up to 360° : $\xrightarrow[8]{4}$
2. Calculate the number of learners in each segment:

$$
\begin{aligned}
& \text { blue: } 5 \% \text { of } 240=\frac{5}{100} \times 240=12 \\
& \text { brown: } 80 \% \text { of } 240=\frac{80}{100} \times 240=192 \\
& \text { green: } 5 \% \text { of } 240=\frac{5}{100} \times 240=12 \\
& \text { other: } 10 \% \text { of } 240=\frac{10}{100} \times 240=24
\end{aligned}
$$

$$
\begin{gathered}
\text { Check your answer to see if it adds up to 240: } \\
12+192+12+24=240
\end{gathered}
$$

[^0]: In each of the above examples, the accuracy of the value

