

The Answer Series Gr 12 Maths B00KWORK

(Extracts from TAS Gr 12 Maths 2-in-1 and Toolkit)

All the proofs you need to know!

(also available in Afrikaans)

Paper 1: (a maximum of 6 marks)
page 1
Arithmetic \& Geometric Series

Paper 2: (a maximum of 12 marks)
page 2 to 7
Geometry (7 theorems) and
Trigonometry (4 proofs \& 5 formulae derivations)

Plus Calculator Instructions

PAPER 1: PROOFS

Arithmetic and Geometric Series S_{n} : the sum of n terms

Arithmetic Series:

GR 12 MATHS 2-in-1

- Geometric Series:

$$
\text { Notice that: } \frac{b-a}{d-c}=\frac{-(a-b)}{-(c-d)}=\frac{a-b}{c-d}
$$

Also remember:

- $S_{\infty}=S_{n}$ as $n \rightarrow \infty$ if $-1<r<1$

$$
\begin{aligned}
& =\frac{a(1-\mathbf{0})}{1-r} \ldots r^{n} \rightarrow 0 \text { if }-1<r<1 \\
& =\frac{a}{1-r}
\end{aligned}
$$

- $\sum_{k=1}^{n} T_{k}=S_{n}$ and $\sum_{k=1}^{\infty} T_{k}=S_{\infty}$ if $-1<r<1$

PAPER 2: EXAMINABLE PROOFS 2023/2024

These are the examinable

- 00
-036
- 3

proofs required:

5 Gr 11 \& 2 Gr 12

The Answer Series Mathematics publications have been designed to develop ...

- conceptual understanding
- reasoning techniques
- procedural fluency \& adaptability

- a variety of strategies for problem-solving

Gr 12 Maths 2-in-1

- Graded questions \& detailed answers in Topics
- 14 CAPS exam papers with detailed solutions, National and IEB, PLUS

- Vital, supportive documents, summaries \& Topic Guides
- EXTENSION: Level 3 \& 4 Questions \& Solutions

Ideal for use throughout the year, facilitating gradual, thorough concept development via its uniquely-designed question and answer route to mastery

- Gr 12 PAST PAPERS TOOLKIT

This product is indeed a 'TOOLKIT' containing DBE \& IEB examination papers, detailed solutions and Topic Guides, plus vital, supportive documents and summaries

Perfect for Exam Preparation for matrics!

EUCLIDEAN GEOMETRY

- Circle Geometry Theorems

(1)

The line segment drawn from the centre of a circle, perpendicular to a chord, bisects the chord.

Given: $\odot \mathrm{O}$ with $\mathrm{OP} \perp \mathrm{AB}$
To Prove: $\mathrm{AP}=\mathrm{PB}$
Construction: Join $O A$ and $O B$
Proof: In Δ^{s} OPA \& OPB

(1) $\mathrm{OA}=\mathrm{OB} \quad \ldots$ radii
(2) $\hat{P}_{1}=\hat{P}_{2}\left(=90^{\circ}\right) \quad \ldots$ given
(3) OP is common

$$
\triangle \mathrm{OAP} \equiv \triangle \mathrm{OBP} \quad \ldots R H S
$$

$A P=P B$, i.e. $O P$ bisects chord $A B<$
(2)

> The line drawn from the centre of a circle that bisects a chord is perpendicular to the chord.

Given: $\odot O$ with $A P=P B$
To Prove: $\mathrm{OP} \perp \mathrm{AB}$
Construction: Join $O A$ and $O B$
Proof: In Δ^{s} OPA \& OPB
恨
$\begin{array}{lll}\text { (1) } \mathrm{OA}=\mathrm{OB} & \ldots \text { radii } \\ \text { (2) } \mathrm{AP}=\mathrm{PB} & \ldots \text { given }\end{array}$
(3) OP is common

$$
\begin{aligned}
& \therefore \Delta \mathrm{OAP} \equiv \Delta \mathrm{OBP} \quad \ldots S S \\
& \hat{P}_{1}=\hat{P}_{2} \\
& \text { But, } \quad \hat{P}_{1}+\hat{P}_{2}=180^{\circ} \quad \ldots \angle^{s} \text { on a straight line } \\
& \therefore \hat{P}_{1}=\hat{P}_{2}=90^{\circ} \\
& \text { i.e. } O P \perp \mathbf{A B}<
\end{aligned}
$$

 double the angle it subtends at any point on the circumference.

Given: $\odot \bigcirc$, arc $A B$ subtending $A \hat{O} B$ at the centre and $A \hat{P} B$ at the circumference.
To Prove: $\quad A O \hat{B}=2 A \hat{P} B$
Construction: Join PO and produce it to Q

Proof: Let $\hat{\mathrm{P}}_{1}=x$
䈅
Then $\hat{A}=x \quad \ldots L^{s}$ opposite equal radii $\therefore \hat{\mathrm{O}}_{1}=2 x \quad \ldots$ exterior \angle of $\triangle A O P$

Similarly, if $\hat{\mathrm{P}}_{2}=\mathrm{y}$, then $\hat{\mathrm{O}}_{2}=2 \mathrm{y}$

$$
\begin{aligned}
\mathbf{A} \hat{\mathbf{O}} & =2 x+2 \mathrm{y} \\
& =2(x+\mathrm{y}) \\
& =2 \mathbf{A P B}<
\end{aligned}
$$

(4)

The opposite angles of a cyclic quadrilateral are supplementary.

Given: $\odot \bigcirc$ and cyclic quadrilateral $A B C D$
To Prove: $\hat{A}+\hat{C}=180^{\circ} \& \hat{B}+\hat{D}=180^{\circ}$

Construction: Join BO and DO.

Proof: Let $\hat{A}=x$
最

$$
\text { Then } \quad \hat{\mathrm{O}}_{1}=2 x \quad \ldots \angle \text { at centre }=2 \times
$$

$$
\begin{aligned}
\text { Then } \quad \hat{\mathrm{O}}_{1} & =2 x \quad \ldots<\text { at centre }=2 x \\
\therefore & \hat{O}_{2}=360^{\circ}-2 x
\end{aligned}
$$

$$
\therefore \hat{C}=\frac{1}{2}\left(360^{\circ}-2 x\right)=180^{\circ}-x
$$

$$
\angle \text { at centre }=2 \times
$$

$$
\angle \text { at circumference }
$$

$$
\therefore \hat{A}+\hat{C}=x+180^{\circ}-x=180^{\circ}
$$

\& $\therefore \hat{\mathbf{B}}+\hat{\mathbf{D}}=18 \mathbf{0}^{\circ}<\ldots$ sum of \angle^{s} in quad $=360^{\circ}$
(5)

The angle between a tangent to a circle and a chord drawn from the point of

 contact is equal to the angle subtended by the chord in the alternate segment.
Method 1

Given: $\odot \mathrm{O}$ with tangent at N and chord NM
subtending $\hat{\mathrm{K}}$ at the circumference.
RTP: MNQ = K
Construction: radii OM and ON
Proof: Let $\mathrm{MNQ}=x$

$$
\mathrm{ONQ}=90^{\circ} \quad \ldots \text { radius } \perp \text { tangent }
$$

$\therefore \mathrm{ONM}=90^{\circ}-x$
$\mathrm{OMN}=90^{\circ}-x \quad \ldots \angle^{s}$ opposite equal radit
MÔN $=2 x \quad \ldots$ sum of \angle^{s} in Δ
$\therefore \hat{\mathrm{K}}=x \quad \ldots \angle$ at centre $=2 \times \angle$ at circumference
$\mathbf{M N Q}=\hat{\mathbf{K}}<$

Method 2

We use 2 'previous' facts involving right \angle s
(1) tangent \perp diameter ... so, draw a diameter!
(2) \angle in semi $-\odot=\mathbf{9 0}^{\circ} \quad \ldots$ so, join $R K$!

Given: $\odot O$ with tangent at N and chord NM subtending \hat{K} at the circumference.

RTP: $\quad \mathrm{MNQ}=\mathrm{MKN}$
Construction: diameter NR; join RK
Proof: $\quad \mathrm{RNQ}=\mathbf{9 0}^{\circ} \ldots$ tangent \perp diameter

$$
\text { \& RKN }=\mathbf{9 0}^{\circ} \quad \ldots \angle \text { in semi- } \odot
$$

Then...
Let $\quad \mathrm{MNQ}=\boldsymbol{x}$
$\therefore \hat{R N M}=90^{\circ}-\boldsymbol{x}$
\therefore RKM $=\mathbf{9 0}^{\circ}-\boldsymbol{x} \quad \ldots \angle^{s}$ in the same seg
\therefore MK̂N $=\boldsymbol{x}$
MN̂Q $=\mathbf{M K} N<$

These proofs
are logical \& easy to follow.

1

- The Proportion Theorem

(6)

A line parallel to one side of a triangle divides
the other two sides proportionally.

$$
\text { i.e. } D E \| B C \Rightarrow \frac{A D}{D B}=\frac{A E}{E C}
$$

Given: $\triangle A B C$ with $D E \| B C$, $D \& E$ on $A B \& A C$ respectively.

To prove: $\frac{A D}{D B}=\frac{A E}{E C}$

Construction: Join DC \& BE

Proof: $\quad \frac{\text { Area of } \triangle A D E}{\text { Area of } \triangle D B E}=\frac{\frac{1}{2} \mathrm{AD.h}}{\frac{1}{2} \mathrm{DB} \cdot \mathrm{h}}=\frac{\mathrm{AD}}{\mathrm{DB}}$
Similarly: $\frac{\text { Area of } \triangle A D E}{\text { Area of } \triangle E D C}=\frac{A E}{E C}\left(\frac{\frac{1}{2} A E \cdot h^{\prime}}{\frac{1}{2} E C . h^{\prime}}\right)$
h is the height of $\triangle^{s} A D E$ and $D B E$
h^{\prime} is the height of $\triangle^{s} A D E$ and $E D C$

But:
$\triangle D B E=\triangle E D C$, in area
on the same base $D E$; between || lines, $D E \& B C$
and: $\quad \triangle A D E$ is common
$\frac{\text { Area of } \triangle A D E}{\text { Area of } \triangle D B E}=\frac{\text { Area of } \triangle A D E}{\text { Area of } \triangle E D C}$

$$
\frac{A D}{D B}=\frac{A E}{E C}<
$$

The Similar $\Delta^{\mathbf{s}}$ Theorem

> If two triangles are equiangular, then their sides are proportional and, therefore, they are similar.

$$
\begin{array}{ll}
\text { Given: } & \triangle A B C \& \Delta D E F \text { with } \hat{A}=\hat{D} \quad \hat{B}=\hat{E} \quad \& \quad \hat{C}=\hat{F} \\
\text { To prove: } & \frac{A B}{D E}=\frac{A C}{D F}=\frac{B C}{E F}
\end{array}
$$

Construction: Mark $P \& Q$ on $D E \& D F$ such that $D P=A B \& D Q=A C$

Similarly, by marking S and T on $D E$ and $E F$ such that $S E=A B$ and $E T=B C$, it can be proved that $: \frac{A B}{D E}=\frac{B C}{E F}$

$$
\therefore \frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{AC}}{\mathrm{DF}}=\frac{\mathrm{BC}}{\mathrm{EF}}<
$$

$\therefore \triangle A B C$ and $\triangle D E F$ are similar

TRIGONOMETRY PROOFS

Area, Sine \& Cosine Rules
(1) The Area rule

Area of $\triangle A B C=\frac{1}{2} a b \sin C$
CONSTRUCTION: Draw AD $\perp B C$

$$
\text { PROOF: Area of } \triangle \mathrm{ABC}=\frac{1}{2} \mathrm{ah} \quad \ldots \text { (1) } \begin{aligned}
\text { But, in } \triangle \mathrm{ACD}: \frac{\mathbf{h}}{\mathrm{b}} & =\sin \mathrm{C} \\
\therefore \mathbf{h} & =\mathrm{b} \sin \mathrm{C} \quad \ldots \text { (2) }
\end{aligned}
$$

\hat{c} acute

(2) in (1): \therefore Area of $\triangle A B C=\frac{1}{2} a b \sin C$

(2) The Sine rule
$\frac{\sin A}{a}=\frac{\sin B}{b} \quad=\frac{\sin C}{c}$

CONSTRUCTION: Draw $C D \perp A B$
\hat{B} acute

$$
\begin{aligned}
\ln \triangle \mathrm{ADC}: \quad \frac{\mathbf{h}}{\mathrm{b}} & =\sin \mathrm{A} \\
\therefore \mathbf{h} & =\mathrm{b} \sin \mathrm{~A} \\
\ln \triangle \mathrm{BDC}: \quad \frac{\mathbf{h}}{\mathrm{a}} & =\sin \mathrm{B} \\
\therefore \mathbf{h} & =\mathrm{a} \sin \mathrm{~B} \quad \ldots
\end{aligned}
$$

Equating (1) \& 2: $\therefore b \sin A=a \sin B$

$$
\div a b) \quad \therefore \quad \frac{\boldsymbol{\operatorname { s i n }} \mathbf{A}}{\mathbf{a}}=\frac{\boldsymbol{\operatorname { s i n }} \mathbf{B}}{\mathbf{b}}
$$

Similarly, by drawing a perpendicular from \mathbf{B}, one can prove: $\frac{\boldsymbol{\operatorname { s i n }} \mathbf{A}}{\mathbf{a}}=\frac{\boldsymbol{\operatorname { s i n }} \mathbf{C}}{\mathbf{c}}$

$$
\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}
$$

(3) The Cosine rule

```
a}=\mp@subsup{\mathbf{2}}{}{2}=\mp@subsup{b}{}{2}+\mp@subsup{c}{}{2}-2bc\operatorname{cos}
```

CONSTRUCTION: Draw CD \perp BA
PROOF: $\mathrm{a}^{2}=\mathrm{BD}^{2}+\mathrm{h}^{2} \quad \ldots$ Pythagoras

$$
\begin{aligned}
\therefore a^{2} & =(c-A D)^{2}+h^{2} \\
& =c^{2}-2 c \cdot A D+\underbrace{A D^{2}+h^{2}}_{b^{2}} \\
& =c^{2}-2 c \cdot A D \text { Pythagoras } \\
& =b^{2}+c^{2}-2 c \cdot A D \quad \ldots
\end{aligned}
$$

In $\triangle A D C: \frac{A D}{b}=\cos A$
$A D=b \cos A \quad \ldots$ (2
Mathematics
11

See our Gr 11 Study Guide for graded exercises and assessments.
(2) in (1):
$a^{2}=b^{2}+c^{2}-2 b c \cos A$

$\therefore \mathbf{a}^{2}=\mathbf{b}^{2}+\mathbf{c}^{2}-\mathbf{2 b c} \cos$

For CONSTRUCTIONS in all 3 proofs,

Area Rule, Sine Rule \& Cosine Rule

Always construct the height from a vertex NOT involved in the formula

- To prove: Area $=\frac{1}{2} \mathrm{ab} \sin \mathbf{C}$, draw a height from \mathbf{A} or \mathbf{B}, not \mathbf{C}.
- To prove: $\frac{\sin \mathbf{A}}{a}=\frac{\sin \mathbf{B}}{b}$, draw a height from $\mathbf{C}, \operatorname{not} \mathbf{A}$ or \mathbf{B}.
- To prove: $a^{2}=b^{2}+c^{2}-2 b c \cos \mathbf{A}$, draw a height from \mathbf{B} or \mathbf{C}, not \mathbf{A}.

Compound Angle Formulae

1. $\sin (A+B)=\sin A \cos B+\cos A \sin B$
2. $\quad \sin (A-B)=\sin A \cos B-\cos A \sin B$

Sign stays the same sine \& cosine of A and B mixed
3. $\cos (A+B)=\cos A \cos B-\sin A \sin B$
4. $\cos (A-B)=\cos A \cos B+\sin A \sin B$

Sign changes cosine of A and B first, then sine of $A \& B$

- The PROOF of the formula: $\boldsymbol{\operatorname { c o s }}(\mathbf{A}-\mathbf{B})=\boldsymbol{\operatorname { c o s }} \mathbf{A} \cos \mathbf{B}+\boldsymbol{\operatorname { s i n }} \mathbf{A} \sin \mathbf{B}$ is examinable. So, too, derivations $1,2 \& 3$ from this formula

See our TAS Maths CAPS curriculum Pp. 15 \& 42 on our TAS FET COMMUNITY PAGE

Double Angle Formulae

5. $\sin 2 A=2 \sin A \cos A \quad .$. Derived from formula no. 1.
6. $\cos 2 \mathbf{A}=\cos ^{2} \mathbf{A}-\sin ^{2} \mathbf{A} \quad .$. Derived from formula no. 3 . or $\cos 2 A=1-2 \sin ^{2} A$ or $\cos 2 A=2 \cos ^{2} A-1$

Refer to our

 Gr 12 Maths 2-in-1 (\#9 P. 25)
Proof of the Formula:

$$
\cos (A-B)=\cos A \cos B+\sin A \sin B
$$

NOTE:

First,
an important
concept!
:---
then: $\frac{x}{\mathbf{1}}=\cos \theta$ and $\frac{y}{\mathbf{1}}=\sin \theta$
y

i.e. \mathbf{P} is the point $(\cos \theta ; \sin \theta)$

See $\hat{\mathbf{A}}$ and $\hat{\mathbf{B}}$ placed in standard position alongside.

```
RÔQ = \hat{\mathbf{A}}-\hat{\mathbf{B}}
```

The coordinates of the points \mathbf{R} and \mathbf{Q}, both 1 unit from the origin, are
$R(\cos A ; \sin A) \& Q(\cos B ; \sin B)$

See NOTE above

Determine two expressions for $\mathbf{R Q}^{2}$

$$
\begin{aligned}
\mathbf{R Q}^{2} & =1^{2}+1^{2}-2(1)(1) \cos (\mathrm{A}-\mathrm{B}) \\
& =2-2 \cos (\mathrm{~A}-\mathrm{B}) \quad \ldots
\end{aligned}
$$

COSINE RULE
$\& \mathbf{R Q}^{\mathbf{2}}=(\cos A-\cos B)^{2}+(\sin A-\sin B)^{2}$
DISTANCE FORMULA
$=\cos ^{2} A-2 \cos A \cos B+\cos ^{2} B+\sin ^{2} A-2 \sin A \sin B+\sin ^{2} B$

- $-\cdots--\cdots$
$=2-2 \cos A \cos B-2 \sin A \sin B<\ldots\left(2 \ldots \sin ^{2} \theta+\cos ^{2} \theta=1\right.$

Equate the two expressions for $R Q^{2}$ above:
(1) = (2)
$\therefore 2-2 \cos (A-B)=2-2 \cos A \cos B-2 \sin A \sin B$
Subtract 2: $\quad \therefore-2 \cos (A-B)=-2 \cos A \cos B-2 \sin A \sin B$

Divide by $\mathbf{- 2}$
$\cos (A-B)=\cos A \cos B+\sin A \sin B<$
(or \times by $-\frac{1}{2}$)

Derivation of Compound Angle Formulae

> We accept and use the formula: $\cos (\mathbf{A}-\mathbf{B})=\cos \mathbf{A} \cos \mathbf{B}+\sin \mathbf{A} \sin \mathbf{B}$

- $\cos (A+B)=\cos [A-(-B)]$ \square The cos of the difference of the two angles
$=\cos A \cos (-B)+\sin A \sin (-B)$
$=\cos A \cos B+\sin A(-\sin B)$
$=\cos A \cos B-\sin A \sin B \ll$
- $\boldsymbol{\operatorname { s i n }}(A+B)=\cos \left[90^{\circ}-(A+B)\right]$
$=\cos \left[90^{\circ}-\mathrm{A}-\mathrm{B}\right]$
$=\cos \left[\left(90^{\circ}-A\right)-B\right]$
The cos of the difference of the two angles
$=\cos \left(90^{\circ}-A\right) \cos B+\sin \left(90^{\circ}-A\right) \sin B$
$=\sin A \cos B+\cos A \sin B<$
- $\sin (A-B)=\cos \left[90^{\circ}-(A-B)\right]$
$=\cos \left[90^{\circ}-A+B\right]$
$=\cos \left[\left(90^{\circ}-A\right)-(-B)\right]$ The cos of the difference of the two angles
$=\cos \left(90^{\circ}-A\right) \cos (-B)+\sin \left(90^{\circ}-A\right) \sin (-B)$
$=\sin A \cos B+\cos A(-\sin B)$
$=\sin A \cos B-\cos A \sin B<$

See our graded exercises and copious exam questions in TAS Grade 12 study guides.

Derivation of Double Angle Formulae

- $\sin 2 A$

```
sin 2A = \operatorname{sin}(A+A) ... see sin}(A+B)\mathrm{ above
    = sin A cos A + cos A sin A ... add like terms: xy + yx=2xy
    = 2 sin A cos A <
```

- cos 2A

```
\operatorname{cos}2A=\operatorname{cos(A+A)}
\(=\cos A \cos A-\sin A \sin A\)
\(=\cos ^{2} A-\sin ^{2} A<\)
But: \(\sin ^{2} \mathrm{~A}+\cos ^{2} \mathrm{~A}=1\)
```

see $\cos (A+B)$ above
$\therefore \cos ^{2} \mathrm{~A}=1-\sin ^{2} \mathrm{~A} \quad \& \quad \sin ^{2} \mathrm{~A}=1-\cos ^{2} \mathrm{~A}$

$$
\begin{aligned}
\cos 2 A & =\left(1-\sin ^{2} A\right)-\sin ^{2} A \\
& =1-2 \sin ^{2} A<
\end{aligned}
$$

OR

$\cos 2 A=\cos ^{2} A-\left(1-\cos ^{2} A\right)$
$=\cos ^{2} \mathrm{~A}-1+\cos ^{2} \mathrm{~A}$
$=2 \cos ^{2} A-1$
It is easier to memorise formulae which we understand.

MEAN AND STANDARD DEVIATION

There are 3 phases for each calculator procedure:
STEP 1: How to get there
STEP 2: How to enter the data
STEP 3: How to find the mean and the standard deviation.
 (and, in the next column, \mathbf{A}, \mathbf{B} and \mathbf{r})

Ungrouped Data

You'll see:

STEP 1:

- Press MODE ; Select STAT ; Select 1 - VAR

Grouped Data/Frequency Tables

You'll see:
STEP 1:

- Press MODE ; Select STAT ; Select 1 - VAR

- SHIFT SETUP ; Scroll down (use arrow) Select STAT ; Select ON

STEP 2:

- Enter the midpoint of each interval,
followed by $=$, then .
After the last value: = (and not AC) then... .
Use to move to the top of the right-hand column.
Type in the correct frequencies followed by = each time; after the last frequency: = AC $\longleftarrow *$

STEP 3:

- To find the mean : SHIFT| STAT ; Select Var ; Select $\overline{\boldsymbol{x}}=$
- To find the S.D.: SHIFT| STAT ; Select Var ; Select $\boldsymbol{x} \sigma \mathbf{n}=$

REGRESSION \& CORRELATION
The equation of the regression line

$$
\mathbf{y}=\mathbf{A}+\mathbf{B} x
$$

STEP 1:
Press MODE ; Select STAT
Select A + Bx

You'll see:

STEP 2:
Enter the x and y values, each followed by $=$ Use to move to the top of the right-hand column.) After the last y value, press $=$, then press $\mathbf{A C}$

STEP 3:
Press SHIFT| STAT ; Select Reg
then:
Select \mathbf{A}, press $\mathbf{=}$ or Select \mathbf{B}, press $=$

> To find \mathbf{B} after \mathbf{A}, press $\mathbf{A C}$ and then do the whole of STEP 3.
and
The correlation coefficient, r
Just like for \mathbf{A} and \mathbf{B} in the regression function: FOLLOW STEPS 1, 2 \& 3 above:

But, now: Select \mathbf{r}, press =
If you have found \mathbf{A} and \mathbf{B} first, press $\mathbf{A C}$ before going back to the beginning of STEP 3 .

[^0]Copyright © The Answer Series

[^0]: To clear completely: Press SHIFT| CLR ; 1|=| AC

