

EUCLIDEAN GEOMETRY: FET

THEOREM STATEMENTS & ACCEPTABLE REASONS

LINES		If three sides of one triangle are respectively equal to	SSS	
The adjacent angles on a straight line are supplementary.	\angle^{s} on a str line	three sides of another triangle, the triangles are congruent.		
If the adjacent angles are supplementary, the outer arms of these angles form a straight line.	adj ∠ ^s supp	If two sides and an included angle of one triangle are respectively equal to two sides and an included angle of another triangle, the triangles are congruent	SAS OR S∠S AAS OR ∠∠S	
The adjacent angles in a revolution add up to 360°.	\angle^{s} around a pt OR \angle^{s} in a rev			
Vertically opposite angles are equal.	vert opp ∠ ^s	If two angles and one side of one triangle are respectively equal to two angles and the corresponding		
If AB CD, then the alternate angles are equal.	alt ∠ ^s ; AB CD	side in another triangle, the triangles are congruent.		
If AB CD, then the corresponding angles are equal.	corresp ∠ ^s ; AB CD	If in two right angled triangles, the hypotenuse and one side	RHS OR 90°HS	
If AB CD, then the co-interior angles are supplementary.	co-int ∠ ^s ; AB CD	and one side of the other, the triangles are congruent.		
If the alternate angles between two lines are equal, then the lines are parallel.	alt ∠ ^s =	The line segment joining the midpoints of two sides of a triangle is parallel to the third side and equal to half the	Midpt Theorem	
If the corresponding angles between two lines are equal, then the lines are parallel.	corresp ∠ ^s =	length of the third side.		
If the co-interior angles between two lines are supplementary, then the lines are parallel.	co-int ∠ ^s supp	The line drawn from the midpoint of one side of a triangle, parallel to another side, bisects the third side.	line through midpt to 2 nd side	
TRIANGLES		A line drawn parallel to one side of a triangle divides the other two sides proportionally.	line one side of ∆ OR prop theorem; name lines	
The interior angles of a triangle are supplementary.		If a line divides two sides of a triangle in the same	line divides two sides of Δ in prop Δ^{s} OR equiangular Δ^{s}	
The exterior angle of a triangle is equal to the sum of the interior opposite angles.	$ext \angle of \Delta$	If two triangles are equiangular, then the corresponding		
The angles opposite the equal sides in an isosceles triangle are equal.	∠ ^s opp equal sides	sides are in proportion (and consequently the triangles are similar).		
The sides opposite the equal angles in an isosceles triangle are equal.	sides opp equal \angle^s	If the corresponding sides of two triangles are	sides of Δ in prop	
In a right-angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.	Pythagoras OR Theorem of Pythagoras	consequently the triangles are similar).		
If the square of the longest side in a triangle is equal to the sum of the squares of the other two sides then the triangle is right-angled.	Converse Pythagoras OR Converse Theorem of Pythagoras	If triangles (or parallelograms) are on the same base (or on bases of equal length) and between the same parallel lines, then the triangles (or parallelograms) have equal areas.	same base; same height OR equal bases; equal height	

QUADRILATERALS

CIRCLES

GROUP I

The interior angles of a quadrilateral add up to 360°.	sum of \angle^{s} in quad
The opposite sides of a parallelogram are parallel.	opp sides of m
If the opposite sides of a quadrilateral are parallel, then the quadrilateral is a parallelogram.	opp sides of quad are OR converse opp sides of m
The opposite sides of a parallelogram are equal in length.	opp sides of m
If the opposite sides of a quadrilateral are equal, then the quadrilateral is a parallelogram.	opp sides of quad are = OR converse opp sides of a parm
The opposite angles of a parallelogram are equal.	opp ∠ ^s of m
If the opposite angles of a quadrilateral are equal then the quadrilateral is a parallelogram.	opp ∠ ^s of quad are = OR converse opp angles of a parm
The diagonals of a parallelogram bisect each other.	diag of m
If the diagonals of a quadrilateral bisect each other, then the quadrilateral is a parallelogram.	diags of quad bisect each other OR converse diags of a parm
If one pair of opposite sides of a quadrilateral are equal and parallel, then the quadrilateral is a parallelogram.	pair of opp sides = and
The diagonals of a parallelogram bisect its area.	diag bisect area of m
The diagonals of a rhombus bisect at right angles.	diags of rhombus
The diagonals of a rhombus bisect the interior angles.	diags of rhombus
All four sides of a rhombus are equal in length.	sides of rhombus
All four sides of a square are equal in length.	sides of square
The diagonals of a rectangle are equal in length.	diags of rect
The diagonals of a kite intersect at right-angles.	diags of kite
A diagonal of a kite bisects the other diagonal.	diag of kite
A diagonal of a kite bisects the opposite angles.	diag of kite

O O	The tangent to a circle is perpendicular to the radius/diameter of the circle at the point of contact.	tan ⊥ radius tan ⊥ diameter
O O	If a line is drawn perpendicular to a radius/diameter at the point where the radius/diameter meets the circle, then the line is a tangent to the circle.	line ⊥ radius OR converse tan ⊥ radius OR converse tan ⊥ diameter
	The line drawn from the centre of a circle to the midpoint of a chord is perpendicular to the chord.	line from centre to midpt of chord
	The line drawn from the centre of a circle perpendicular to a chord bisects the chord.	line from centre \perp to chord
	The perpendicular bisector of a chord passes through the centre of the circle.	perp bisector of chord
	The angle subtended by an arc at the centre of a circle is double the size of the angle subtended by the same arc at the circle (on the same side of the chord as the centre)	\angle at centre = 2 × \angle at circumference
Õ	The angle subtended by the diameter at the circumference of the circle is 90°.	\angle^{s} in semi circle OR diameter subtends right angle OR \angle in $\frac{1}{2}$ \odot
O	If the angle subtended by a chord at the circumference of the circle is 90°, then the chord is a diameter.	chord subtends 90° OR converse \angle ^s in semi circle

GROUP II		GROUP III			
(x y)	Angles subtended by a chord of the circle, on the same side of the chord, are equal	\angle^{s} in the same seg	x	The opposite angles of a cyclic quadrilateral are supplementary (i.e. x and y are supplementary)	opp ∠ ^s of cyclic quad
x x	If a line segment joining two points subtends equal angles at two points on the same side of the line segment, then the four points are concyclic.	line subtends equal ∠ ^s OR	x 180° - x	If the opposite angles of a quadrilateral are supplementary then the quadrilateral is cyclic.	opp ∠ ^s quad sup OR converse opp ∠ ^s of cyclic quad
	(This can be used to prove that the four points are concyclic).			The exterior angle of a cyclic quadrilateral is equal to the interior opposite angle.	ext $ ightarrow$ of cyclic quad
	Equal chords subtend equal angles at the circumference of the circle.	equal chords; equal \angle^{s}		If the exterior angle of a quadrilateral is equal to the interior opposite	ext ∠ = int opp ∠ OR
	Equal chords subtend equal angles at the centre of the circle.	equal chords; equal ∠ ^s		quadrilateral is cyclic.	converse ext \angle of cyclic quad
			GROUP IV		
	Equal chords in equal circles subtend equal angles at the circumference of the circles.	equal circles; equal chords; equal ∠ ^s	A	Two tangents drawn to a circle from the same point outside the	Tans from common pt OR
	Equal chords in equal circles		c		Tans from same pt
	of the circles. (A and B indicate the centres of the circles)	equal circles; equal chords; equal ∠ ^s	x v x	The angle between the tangent to a circle and the chord drawn from the point of contact is equal to the	tan chord theorem
				angle in the alternate segment.	
	HE ANSWER RIES Your Key to Exam Success			angle in the alternate segment. If a line is drawn through the end- point of a chord, making with the chord an angle equal to an angle in the alternate segment, then the line is a tangent to the circle. (If $x = b$ or if $y = a$ then the line is a tangent to the circle)	converse tan chord theorem OR ∠ between line and chord