THEOREM STATEMENTS \& ACCEPTABLE REASONS

LINES
The adjacent angles on a straight line are supplementary. ι^{s} on a str line If the adjacent angles are supplementary, the outer arms of these angles form a straight line. adj \angle^{s} supp The adjacent angles in a revolution add up to 360°. \angle^{s} around a pt $\mathrm{OR} \angle^{\mathrm{s}}$ in a rev Vertically opposite angles are equal. vert opp \angle^{s} If $\mathrm{AB} \\| \mathrm{CD}$, then the alternate angles are equal. alt $\angle^{\mathrm{s}} ; \mathrm{AB} \\| \mathrm{CD}$ If $\mathrm{AB} \\| \mathrm{CD}$, then the corresponding angles are equal. corresp $\angle^{\mathrm{s}} ; \mathrm{AB} \\| \mathrm{CD}$ If $\mathrm{AB} \\| \mathrm{CD}$, then the co-interior angles are supplementary. co-int $\angle^{\mathrm{s}} ; \mathrm{AB} \\| \mathrm{CD}$ If the alternate angles between two lines are equal, then the lines are parallel. alt $\angle^{\mathrm{s}}=$ If the corresponding angles between two lines are equal, then the lines are parallel. corresp $\angle^{\mathrm{s}}=$ If the co-interior angles between two lines are supplementary, then the lines are parallel. co-int \angle^{s} supp

TRIANGLES

The interior angles of a triangle are supplementary.
The exterior angle of a triangle is equal to the sum of the interior opposite angles.
\angle sum in $\triangle \mathbf{O R}$ sum of $\angle^{\text {s }}$ in Δ OR int \angle^{s} in Δ
ext \angle of Δ
The angles opposite the equal sides in an isosceles triangle are equal.
The sides opposite the equal angles in an isosceles triangle are equal.
In a right-angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

If the square of the longest side in a triangle is equal to the sum of the squares of the other two sides then the triangle is right-angled.
$\angle^{\text {s }}$ opp equal sides
sides opp equal $\angle^{\text {s }}$
Pythagoras OR
Theorem of Pythagoras
Converse Pythagoras OR Converse Theorem of Pythagoras

If three sides of one triangle are respectively equal to three sides of another triangle, the triangles are congruent.

SSS

If two sides and an included angle of one triangle are respectively equal to two sides and an included angle of another triangle, the triangles are congruent.

If two angles and one side of one triangle are respectively equal to two angles and the corresponding side in another triangle, the triangles are congruent.

If in two right angled triangles, the hypotenuse and one side of one triangle are respectively equal to the hypotenuse and one side of the other, the triangles are congruent.

The line segment joining the midpoints of two sides of a triangle is parallel to the third side and equal to half the

Midpt Theorem length of the third side.

The line drawn from the midpoint of one side of a triangle, parallel to another side, bisects the third side.

line through midpt || to

 $2^{\text {nd }}$ sideA line drawn parallel to one side of a triangle divides the other two sides proportionally

If a line divides two sides of a triangle in the same proportion, then the line is parallel to the third side.

If two triangles are equiangular, then the corresponding sides are in proportion (and consequently the triangles are similar).

If the corresponding sides of two triangles are proportional, then the triangles are equiangular (and consequently the triangles are similar).

If triangles (or parallelograms) are on the same base (or on bases of equal length) and between the same parallel lines, then the triangles (or parallelograms) have equal areas.
line $\|$ one side of $\Delta \mathbf{O R}$ prop theorem; name || lines line divides two sides of Δ in prop

III Δ^{s} OR equiangular Δ^{s} sides of Δ in prop same base; same height OR equal bases; equal height

QUADRILATERALS

The interior angles of a quadrilateral add up to 360°
sum of \angle^{s} in quad

The opposite sides of a parallelogram are parallel.

If the opposite sides of a quadrilateral are parallel, then the quadrilateral is a parallelogram.
opp sides of \|m
opp sides of quad are || OR converse opp sides of ||m
opp sides of ||m
opp sides of quad are $=\mathbf{O R}$ converse opp sides of a parm
opp $\angle^{\text {s }}$ of $\| \mathrm{m}$
opp $\angle^{\text {s }}$ of quad are $=\mathbf{O R}$
converse opp angles of a parm
diag of ||m
diags of quad bisect each other OR
converse diags of a parm
pair of opp sides = and ||
diag bisect area of ||m
diags of rhombus
diags of rhombus
sides of rhombus
sides of square
diags of rect

diags of kite

diag of kite
diag of kite

CIRCLES

GROUP I

The tangent to a circle is perpendicular
to the radius/diameter of the circle at the point of contact.

If a line is drawn perpendicular to a radius/diameter at the point where the radius/diameter meets the circle, then the line is a tangent to the circle.

The line drawn from the centre of a circle to the midpoint of a chord is perpendicular to the chord.

The line drawn from the centre of a circle perpendicular to a chord bisects the chord

The angle subtended by an arc at the centre of a circle is double the size of the angle subtended by the same arc at the circle (on the same side of the chord as the centre)

The angle subtended by the diameter at the circumference of the circle is 90°.

If the angle subtended by a chord at the circumference of the circle is 90°, then the chord is a diameter.
The perpendicular bisector of a the circle.
tan \perp radius tan \perp diameter
line \perp radius OR
converse tan \perp radius $\mathbf{O R}$ converse tan \perp diameter
line from centre to midpt of chord
line from centre \perp to chord chord passes through the centre of perp bisector of chord
\angle at centre $=2 \times \angle$ at circumference
$\angle^{\text {s }}$ in semi circle OR diameter subtends right angle

OR \angle in $1 / 2 \odot$
chord subtends 90° OR
converse $\angle^{\text {s }}$ in semi circle

Angles subtended by a chord of the circle, on the same side of the chord, are equal

If a line segment joining two points subtends equal angles at two points on the same side of the line segment, then the four points are concyclic.
(This can be used to prove that the four points are concyclic).

Equal chords subtend equal angles at the circumference of the circle.

Equal chords subtend equal angles at the centre of the circle.

Equal chords in equal circles subtend equal angles at the circumference of the circles.

Equal chords in equal circles subtend equal angles at the centre of the circles.
(A and B indicate the centres of the circles)
$L^{\text {s }}$ in the same seg
line subtends equal $L^{\text {s }}$ OR
converse \angle^{s} in the same seg
equal chords; equal \angle^{s}
equal chords; equal $\iota^{\text {s }}$
equal circles; equal chords; equal $\angle^{\text {s }}$
equal circles; equal chords; equal $\angle^{\text {s }}$

GROUP III

The opposite angles of a cyclic quadrilateral are supplementary (i.e. x and y are supplementary)

If the opposite angles of a quadrilateral are supplementary then the quadrilateral is cyclic.
opp $\angle^{\text {s }}$ quad sup OR
converse opp \angle^{s} of cyclic quad

The exterior angle of a cyclic quadrilateral is equal to the interior opposite angle.

If the exterior angle of a quadrilateral is equal to the interior opposite angle of the quadrilateral, then the quadrilateral is cyclic.
ext $\angle=$ int opp \angle
OR
converse ext \angle of cyclic quad

GROUP IV

Two tangents drawn to a circle from the same point outside the circle are equal in length $(A B=A C)$

Tans from common pt

OR

Tans from same pt
tan chord theorem

The angle between the tangent to a circle and the chord drawn from the point of contact is equal to the angle in the alternate segment.

If a line is drawn through the endpoint of a chord, making with the chord an angle equal to an angle in the alternate segment, then the line is a tangent to the circle. (If $x=b$ or if $y=a$ then the line is a tangent to the circle)
converse tan chord theorem
\angle between line and chord

