GeoGebra ... Links to sketches

Topics:

- Analytical Geometry
- Calculus
- Functions
- Geometry (angles and lines, triangles, circles)
- Trigonometry

Analytical Geometry

https://simi.education/online-resources/links-to-sketches-for-analytical-geometry/
Explore the concepts with this digital scratchpad
Use this applet to explore circles.
Grow your understanding of angle of inclination with this applet.

Calculus

https://simi.education/online-resources/links-to-sketches-for-calculus/
Use this sketch to better understand the first and second derivatives and what they tell us about the function, its gradient and its concavity.

Functions

https://simi.education/online-resources/links-to-sketches-for-functions/
Loads of online sketches to help you explore the FUNctions
The linear function
The quadratic function in vanilla form
The quadratic function in standard form
The hyperbolic function
The exponential function in vanilla form
The exponential function in standard form
Exponential and Log graphs
Reflections

Geometry

https://simi.education/online-resources/links-to-sketches-for-geometry/

Interactive Geometry

Complementary means "add to 90° " while supplementary means "add to 180° "

Angles on straight line add to 180° ($\angle S$ on str. line)

Vertically opposite angles are equal (vert. opp. $\angle s$)

sketch

Angles round a point add to 360° ($\angle S$ round a point)

$a+b+c+d=360^{\circ}$ sketch

Parallel lines

corresponding angles (a\&e;b\&f;c\&g; d\&h)
are equal (corr. $\angle s$ on || lines)
sketch
alternate angles (c\&f; d\&e) are equal (alt. $\angle s$ on || lines)
co-interior angles (c\&e ; d\&f) are supplementary (co-int. $\angle s$ on || lines)
sketch

Proving lines parallel

If corresponding angles are equal, then the lines are parallel (corr. $\angle s$ equal)
If alternate angles are equal, then the lines are parallel ($\alpha t . \angle s$ equal)
If co-interior angles are supplementary, then the lines are parallel (co-int. $\angle s$ equal)

Congruency

One can prove congruence ('identicalness') of triangles in one of four ways:

1. Three sides equal (SSS)
2. Two angles and a side in the same corresponding position (AAS)
3. Two sides and an included angle (SAS)
4. Right angle, hypotenuse and a side (RHS)

The symbol for congruency is \equiv. We always list congruent triangles in corresponding order.
If congruent triangles are properly listed, then one can extract information as per the example below:

$\triangle A C E \equiv \triangle B D F$

$$
A E=B F, C \hat{E} A=D \hat{F} B \text { etc. }
$$

Similarity

One can prove similarity of triangles in one of two ways:

1. Prove them equiangular (AAA)
2. Prove that the corresponding sides are in proportion (corr. sides in proportion)

In fact, both are necessary to prove shapes similar, but with triangles the one guarantees the other.

The symbol for similarity is |||. We always list similar triangles in corresponding order, following which we can pull out equal ratios as per the example below:

$\triangle A C E\|\| D F B$
$\frac{A C}{D F}=\frac{A E}{D B}$ and $\frac{A E}{C E}=\frac{D F}{F B}$ etc.

sketch

Areas of similar shapes

Shapes that are similar with sides in the ratio $a: b$ will have areas in the ratio $a^{2}: b^{2}$. In the event of 3dimensional solids their volumes will be in the ratio $a^{3}: b^{3}$

In the above example the sides are in the ratio $1: 2$ so the areas will be in the ratio $1^{2}: 2^{2}=1: 4$
$\triangle A B C=\frac{1}{4} \triangle D E F$ or $\triangle D E F=4 \triangle A B C$

Areas of triangles sharing bases or heights

$\frac{\Delta A B D}{\triangle A B C}=\frac{\frac{1}{2} \times A D \times h t}{\frac{1}{2} \times A C \times h t}=\frac{A D}{A C} \quad \frac{\Delta A B C}{\Delta A B D}=\frac{\frac{1}{2} \times A B \times h_{2}}{\frac{1}{2} \times A B \times h_{1}}=\frac{h_{2}}{h_{1}}$
sketch

The areas of triangles with a shared / common height are in the same ratio as their bases. (shared heights)

sketch
The areas of triangles with a shared base are in the same ratio as their heights.
(shared bases)

$\triangle A B C=\triangle A B D$
sketch

Triangles on the same base between parallel lines have equal areas.
(shared base between parallels)

The proportional intercept theorem

A line drawn parallel to one side of a triangle cuts the other two sides in the same proportion (prop. int)

The converse is true. In other words, if a line cuts two sides of a triangle in the same proportion, then it will be parallel to the third side (conv. prop. int)

sketch

The geometry of the circle

A chord divides a circle into two segments, major and minor

In each case the centre of the circle is marked with O if given.

The angle subtended at the centre of a circle is double the angle subtended at the circumference.
(\angle at centre)
sketch

Angles subtended in the same segment of a circle are equal.
($\angle s$ in same segment)

sketch 1

A diameter
subtends an angle of 90° at the circumference.
(\angle in semi-circle)

sketch
(conv. $\angle \mathrm{s}$ in same
segment)
sketch

Arcs of equal length subtend equal angles.
(= arcs subtend $=\angle s)$

Equal angles are subtended by equal arcs
(= $\angle s$ subtended
by $=$ arcs)

The opposite angles of a cyclic quadrilateral are supplementary.
(opp. $\angle s$ cyclic quad)

sketch

The converse is true.

If opp. angles supplementary, then it is a cyclic quadrilateral
(conv. opp. $\angle s$ cyclic quad)

sketch

Radius is perpendicular to tangent.
(rad. $\perp \tan)$
sketch

The angle between a tangent and a chord is equal to the angle in the alternate segment
(tan chord)

Tangents from a common point are equal in length
(tangents from common pt)
sketch

Converse is true. If angles equal then a tangent.
(conv. tan chord)

sketch

sketch

One can prove a line is a diameter by using the converse of the angle in semi-circle theorem.

One can prove a quadrilateral is cyclic by proving:

- Opposite angles supplementary (opp. $\angle s$ supplementary)
- Exterior angle equal to the opposite interior angle (ext. $\angle=$ opp. int. \angle)
- Converse angles in same segment. (conv. $\angle s$ in same segment)

One can prove a tangent using the converse of the tan-chord theorem.

Trigonometry

https://simi.education/online-resources/links-to-sketches-for-trigonometry/

A digital Trig. Board

This interactive online applet will help you understand how and why the ratios work. It will also help you understand reductions.

Trig. Graphs

This interactive online applet will allow you to explore the parameter associated with trig. graphs. You can also modify the domain and range.

The solution of triangles
Sine rule, cos rule and area rule applets to help you understand how they work.

