GeoGebra Talk on 22 ${ }^{\text {nd }}$ February 2024

Workshop vs Presentation - the pros and cons
GEOmetry first then alGEBRA
Shared principles across both elements of the workshop as it is all one package.
Font size - everything changes!
VIEWS
Algebra - useful but you can turn off if you wish!
Graphics
Graphics2
3D graphics
Probability calculator
Input bar

GEOmetry

Right click on page
Hide grid
Hide axes
Loads of tools - each with a tool tip - read them - they're useful!
Key principle \#1 - ctrl-z (or the undo arrow at top right of the screen) is a great mate!
Key principle \#2 - a tool remains selected until you choose another tool!
If you wish to select something you must first choose the select tool - the arrow top left.
Draw two points
Move them around
Now draw a line which joins them using the segment tool.
Key principle \#3 - right-clicking on an object allows one to change its properties
Play around with the attributes of points and lines - take note of decorations
Key principle \#4 - whatever is selected is affected!
Key principle \#5 - hold down CTRL to select multiple objects in turn - can also select by type in algebra panel.

Delete everything - CTRL A and press delete or backspace

Draw a line segment
Draw a point in free space and draw a point on the line
Try moving them both
Notice - one is free and one is dependent.

Delete everything - CTRL A and press delete or backspace

Draw two points and draw a line through them - not a segment!
Now draw another point
Now use the parallel line tool on the construction drop down to draw a line parallel to your line.

Draw in a transversal and mark the points of intersection.
Now measure a pair of corresponding angles using the angle measure tool on the measurement drop down.

Drag things around

Delete everything - CTRL A and press delete or backspace

Now let's draw a rhombus
Draw a circle
Draw two radii
Draw lines parallel to each of them
Key principle \#6 - Hiding an object is different to deleting it!
Delete everything - CTRL A and press delete or backspace
Now let's draw a quadrilateral with line segments
Construct the Mid-points of the sides
Join them up
Hide the sides of the original quadrilateral but keep the vertices visible. Drag them around.
What do you notice?
Let's confirm this - by taking some measurements using two tools (length and gradient) on the measurement drop down.

Delete everything - CTRL A and press delete or backspace

Now let's draw a triangle
Measure the angles
Calculate the angle sum
Put some interactive text on the diagram
Delete everything - CTRL A and press delete or backspace

Now let's demonstrate angles in same segment of a circle
Draw a circle
Draw in a "bow-tie shape" with the points on the circle.
Measure two angles which are in the same segment
Draw the arcs - minor and major and shade them.
Show the segments with a checkbox!

alGEBRA

Show the axes
Show the grid
Draw $y=x^{2}$
Note: ^ for powers and * for times and sqrt for square root
Delete everything - CTRL A and press delete or backspace
Draw $f(x)=2 x^{3}+5 x^{2}-4 x-3$
Scale the axes
Change the attributes of the graph - show the name and the label
Roots
Extremum
Inflection point
Delete everything - CTRL A and press delete or backspace
Type in a parabola and a circle in standard form
$f(x)=(x+3)^{2}+2$
$(x-2)^{2}+(y+3)^{2}=9$
Note how we can change their forms!
Delete everything - CTRL A and press delete or backspace

Draw $f(x)=x^{2}$
Draw $g(x)=f(x+2)$
Draw $h(x)=f(x)+2$
$\operatorname{Draw} \mathrm{j}(\mathrm{x})=-\mathrm{f}(\mathrm{x})$
Draw $k(x)=f(-x)$
Show labels on all of these - hide some.
Unfix x and drag around.......
Delete everything - CTRL A and press delete or backspace
$a=1$
Draw $y=a x^{2}$
Try changing a
$\mathrm{p}=1$
$\mathrm{q}=1$
Draw $y=a(x+p)^{2}+q$
Try changing a, p and q
Delete everything - CTRL A and press delete or backspace
Draw $y=x^{3}-x^{2}-x+1$
Put a point on curve
Calculate x value of point and store in e as follows $e=x(A)$
Calculate f ' and f '" at e and store in g and s respectively

$$
g=f^{\prime}(e) \text { and } s=f^{\prime \prime} €
$$

Put dynamic text on the graph with the first and second derivatives
Create a new point, showing f'
$B=(e, g)$ and make it trace
Now create a new point showing f"
$\mathrm{C}=(\mathrm{e}, \mathrm{s})$ and make it trace
Delete everything - CTRL A and press delete or backspace

Model an optimisation problem

