SUGGESTED
 2024 Maths FET ATPs
 based on the 2023/2024 DBE ATPs
 compiled by TAS

TERM 1	$\begin{gathered} \text { WEEK } 1 \\ 17 \text { - } 19 \text { Jan } \end{gathered}$	$\begin{gathered} \text { WEEK } 2 \\ 22-26 \text { Jan } \end{gathered}$	WEEK 3 $29 \mathrm{Jan}-2 \mathrm{Feb}$	WEEK 4 $5-9 \text { Feb }$	$\begin{gathered} \text { WEEK } 5 \\ 12-16 \text { Feb } \end{gathered}$	$\begin{gathered} \text { WEEK } 6 \\ 19-23 \text { Feb } \end{gathered}$	WEEK 7 26 Feb - 1 March	WEEK 8 4-8 March	WEEK 9 11-15 March	WEEK 10 18-20 March
Topics	Algebraic expressions				*Exponents, equations and inequalities			Trigonometry		
Date completed										
SbA	Investigation or project				\&			Test (content of term 1)		

2024 National RATP: MATHEMATICS GRADE 10 - TERM 3 (53 days)

TERM 3	$\begin{gathered} \hline \text { WEEK 1 } \\ 9-12 \text { July } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { WEEK 2 } \\ 15-19 \text { July } \\ \hline \end{gathered}$	$\begin{gathered} \text { WEEK 3 } \\ 22-26 \text { July } \\ \hline \end{gathered}$	WEEK 4 $29 \text { July - } 2 \text { Aug }$	$\begin{aligned} & \text { WEEK 5 } \\ & 5-8 \text { Aug } \\ & \hline \end{aligned}$	$\begin{gathered} \text { WEEK 6 } \\ 12-16 \text { Aug } \\ \hline \end{gathered}$	$\begin{gathered} \text { WEEK } 7 \\ 19-23 \text { Aug } \\ \hline \end{gathered}$	$\begin{gathered} \text { WEEK 8 } \\ 26-30 \mathrm{Aug} \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { WEEK } 9 \\ & 2-6 \text { Sept } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { WEEK 10 } \\ & 9-13 \text { Sept } \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { WEEK 11 } \\ 16 \text { - } 20 \text { Sept } \\ \hline \end{gathered}$
Topics	Functions(Exponential Graph \& Trigonometric Functions)			Trigonometry (2D)		* Statistics		* Probability		*Finance and growth	
Date completed											
SBA	Test					Test					

2024 National RATP: MATHEMATICS GRADE 10 - TERM 4 (52 days)

TERM 4	WEEK 1 $1-4 \text { Oct }$	$\begin{aligned} & \hline \text { WEEK 2 } \\ & 7 \text { - } 11 \text { Oct } \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { WEEK 3 } \\ 14-18 \text { Oct } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { WEEK } 4 \\ 21-25 \text { Oct } \\ \hline \end{gathered}$	WEEK 5 $28 \text { Oct-1 Nov }$	$\begin{aligned} & \hline \text { WEEK } 6 \\ & 4-8 \text { Nov } \\ & \hline \end{aligned}$	$\begin{gathered} \text { WEEK } 7 \\ 11-15 \text { Nov } \\ \hline \end{gathered}$	$\begin{gathered} \text { WEEK 8 } \\ 18-22 \text { Nov } \\ \hline \end{gathered}$	$\begin{gathered} \text { WEEK 9 } \\ 25-29 \text { Nov } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { WEEK } 10 \\ 2-6 \mathrm{Dec} \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { WEEK 11 } \\ & 9 \text { - } 11 \text { Dec } \\ & \hline \end{aligned}$	EXAM	
Topics	* Measurement	Number Patterns	Revise Algebra	Revise Trigonometry	Revise Functions	Revise Geometry and Analytical Geometry	Final Examination			Admin		PAPER 1100 marks 2 hours Algebra Number Patterns Finance, growth Functions and Graphs Probability	30
Date completed													$\begin{aligned} & 10 \\ & \mathbf{3 0} \\ & \mathbf{1 5} \end{aligned}$
SBA	Test						FINAL EXAMINATION						
	TOTAL NUMB Term 1 Invest Term 2 Assign Term 3 Test (1 Term 4 Test (1	ER OF SBA TASK gation / Project (1 ment (15\%) and M 4\%) and Test (14\% 4\%)	7 $\%$) and Test (14% D-YEAR EXAM	ATION / CONTR	L TEST (14\%)							PAPER 2100 marks 2 hours Statistics Analytical Geometry Trigonometry Euclidean Geometry \& Measurement	15 15 40 30
	Final SBA is 40% Final Exam is 60\%												

TERM 1 (46 days)	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10
Topics	ALGEBRAIC EXPRESSIONS				* EXPONENTS, EQUATIONS AND INEQUALITIES			TRIGONOMETRY		
	1. Understand that real numbers can be rational or irrational. 2. Establish between which two integers a given simple surd lies. 3. Round real numbers to an appropriate degree of accuracy. 4. Multiplication of a binomial by a trinomial. 5. Factorisation to include types taught in Grade 9 and: - trinomials - grouping in pairs - sum and difference of two cubes 6. Simplifying, adding and subtracting algebraic fractions using factorisation with denominators of cubes (limited to sum and difference of cubes).				1. Revise laws of exponents learnt in Grade 9 where $\boldsymbol{x}, \boldsymbol{y}>\mathbf{0} ; \boldsymbol{m}, \boldsymbol{n} \in \mathbb{Z}$: - $x^{m} \times x^{n}=x^{m+n}$ - $x^{m} \div x^{n}=x^{m-n}$ - $\left(x^{m}\right)^{n}=x^{m n}$ - $x^{m} \times y^{m}=(x y)^{m}$ Also, by definition: $x^{-n}=\frac{1}{x^{n}}, x \neq 0 \text { and } x^{0}=1, x \neq 0$ 2. Use the laws of exponents to simplify expressions and solve equations, accepting that the rules also hold for $m, n \in \mathbf{Q}$. 3. 3.1 Revise the solution of linear equations. 3.2 Solve quadratic equations (by factorisation). 3.3 Solve simultaneous linear equations in two unknowns. 3.4 Solve word problems involving linear, quadratic or simultaneous linear equations. 3.5 Solve literal equations (changing the subject of a formula). 3.6 Solve linear inequalities (and show solution graphically). Interval notation must be known.			1. Define trigonometric ratios $\sin \theta, \cos \theta$ and $\tan \theta$, using the right-angled triangle. 2. Extend the definitions of $\sin \theta, \cos \theta$ and $\tan \theta$ for $0^{\circ} \leq \theta \leq 360^{\circ}$. 3. Define the reciprocal of the trigonometric ratios $\operatorname{cosec} \theta, \sec \theta$ and $\cot \theta$, using the right-angled triangles (these three reciprocals should be examined in grade 10 only). 4. Derive values of the trigonometric ratios for the special cases (without using a calculator) $\theta \in\left\{0^{\circ} ; 30^{\circ} ; 45^{\circ} ; 60^{\circ} ; 90^{\circ}\right\}$. 5. Solve simple trigonometric equations for angles between 0° and 90°. 6. Use a diagram to determine the numerical values of ratios for angles from 0° to 360°. Two-dimensional problems to be done in Term 3.		
Date completed										
SBA	Investigation or project				\&			Test (content of term 1)		

2024 National RATP: MATHEMATICS GRADE 10 - TERM 2

TERM 3 (53 days)	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11
Topics	EXPONENTIAL \& TRIGONOMETRIC FUNCTIONS			TRIGONOMETRY (2D)		*STATISTICS		* PROBABILITY		* FINANCE AND GROWTH	
	*The Exponential function $\left(y=b^{x} ; b>0\right.$ and $\left.b \neq 1\right)$ could be done here in Term 3. 4. Point by point plotting of basic graphs defined by $y=\sin \theta ; y=\cos \theta$ and $y=\tan \theta$ for $\theta \in\left[0^{\circ} ; 360^{\circ}\right]$ 5. Study the effect of α and q on the graphs defined by: $\begin{aligned} & y=\alpha \sin \theta+q ; \\ & y=\alpha \cos \theta+q ; \text { and } \\ & y=\alpha \tan \theta+q \text { where } \alpha \text { and } q \in Q \\ & \text { and } \theta \in\left[0^{\circ} ; 360^{\circ}\right] \end{aligned}$ 6. Sketch graphs, find the equations of given graphs and interpret graphs. Note: Sketching of the graphs must be based on the observation of the effects of α and q in number 3 (Term 2) and number 5 (above).			Solve two-dimensional problems involving right-angled triangles.		1. Measures of central tendency in ungrouped data. Calculate the mean. Determine the median and the mode. 2. Measures of central tendency in grouped data: calculation of mean estimate of grouped data and identification of modal interval and interval in which the median lies. 3. Range as a measure of dispersion and extension to include percentiles, quartiles, inter-quartile and semi-inter-quartile range. 4. Five number summary (maximum, minimum and quartiles) and box and whisker diagram. 5. Use the statistical summaries (measures of central tendency and dispersion), and graphs to analyse and make meaningful comments on the context associated with the given data. 6. Histogram.		1. The use of probability models to compare the relative frequency of events with the theoretical probability. 2. The use of Venn diagrams to solve probability problems, deriving and applying the following for any two events in a sample space S : - $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$. - A and B are mutually exclusive if $P(A$ and $B)=0$; - A and B are complementary if they are, mutually exclusive and $P(A)+P(B)=1 .$ Then: $P(B)=P(\operatorname{not} A)=1-P(A)$		1. Use the simple and compound growth formulae $\begin{aligned} & A=P(1+i n) \text { and } \\ & A=P(1+i)^{n} \end{aligned}$ to solve problems, including interest, hire purchase, inflation, population growth and other real-life problems. Understand the implication of fluctuating foreign exchange rates (e.g. on the petrol price, imports, exports, overseas travel).	
Date completed											
SBA	Test					Test					

2024 National RATP: MATHEMATICS GRADE 10 - TERM 4

2024 National RATP: MATHEMATICS GRADE 11 - TERM 3 (53 days)

TERM 3	WEEK 1 $9-12 \text { July }$	$\begin{gathered} \text { WEEK 2 } \\ 15-19 \text { July } \end{gathered}$	$\begin{gathered} \text { WEEK 3 } \\ 22-26 \text { July } \end{gathered}$	WEEK 4 29 July - 2 Aug	WEEK 5 $5-8 \text { Aug }$	$\begin{gathered} \text { WEEK } 6 \\ 12-16 \text { Aug } \end{gathered}$	$\begin{gathered} \text { WEEK } 7 \\ 19-23 \text { Aug } \end{gathered}$	$\begin{gathered} \text { WEEK } 8 \\ 26 \text { - } 30 \text { Aug } \end{gathered}$	WEEK 9 2-6 Sept	WEEK 10 $9-13 \text { Sept }$	$\begin{aligned} & \text { WEEK } 11 \\ & 16 \text { - } 20 \text { Sept } \end{aligned}$
Topics	Functions (Exponential Graph \& Trigonometric Functions)			*Trigonometry (sine, cosine and area rules)		Statistics		* Probability		*Finance, growth and decay	
Date completed											
SBA	Test					Test					

2024 National RATP: MATHEMATICS GRADE 11 - TERM 4 (52 days)

2024 National RATP: MATHEMATICS GRADE 11 - TERM 1

* 1 week less than in 2023

2024 National RATP: MATHEMATICS GRADE 11 - TERM 2

2024 National RATP: MATHEMATICS GRADE 11 - TERM 4

TERM 4	$\begin{gathered} \hline \text { Week } \mathbf{1} \\ 1-4 \text { Oct } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Week 2 } \\ 7-11 \text { Oct } \\ \hline \end{gathered}$	$\begin{gathered} \text { Week } 3 \\ 14-18 \text { Oct } \\ \hline \end{gathered}$		$\begin{gathered} \text { Week } 4 \\ 21-25 \text { Oct } \\ \hline \end{gathered}$	$\begin{gathered} \text { Week 5 } \\ 28 \text { Oct }-1 \text { Nov } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Week 6 } \\ 4-8 \text { Nov } \\ \hline \end{gathered}$	$\begin{gathered} \text { Week } 7 \\ 11-15 \text { Nov } \end{gathered}$	$\begin{gathered} \hline \text { Week } 8 \\ 18-22 \text { Nov } \\ \hline \end{gathered}$	$\begin{gathered} \text { Week } 9 \\ 25-29 \text { Nov } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Weeks } 10 \text { and } 11 \\ 2-11 \text { Dec } \\ \hline \end{gathered}$	EXAM	
Topics	* NUMBER PATTERNS		REVISION OF MEASUREMENT		REVISION OF ALGEBRA	REVISION OF TRIGONOMETRY	REVISION OF GEOMETRY	FINAL EXAMINATION			ADMIN	PAPER 1150 marks 3 hours	
	Patterns: In number pat those where constant sec between co and the gen therefore qu	gate leading to e is a difference utive terms, term is atic.	1. Revise the volume and surface areas of rightprisms and cylinders. 2. Study the effect on volume and surface areas when multiplying any dimension by a constant factor k . 3. Calculate volume and surface areas of spheres, right prisms, right cones and combination of those objects (figures).							Tin		Algebraic expressions, equations and inequalities Number patterns Finance, growth and decay Functions and graphs Probability	45 25 15 45 20
Date completed												PAPER 2150 marks 3 hours	
SBA	Test							Final Examination				Statistics	
	TOTAL NUMBER OF SBA TASKS 7 Term 1 Investigation / Project (15\%) and Test (14\%) Term 2 Assignment (15\%) and Exam / Control Test (14\%)			$\begin{array}{ll} \text { Term } 3 & \text { Test (14 \%) and Test (14 \%) } \\ \text { Term } 4 & \text { Test (14 \%) } \end{array}$			Final SBA is 40\% Final Exam is 60\%					Analytical Trigonometry Euclidean Geometry	30 50 50

TERM 1	$\begin{gathered} \text { WEEK } 1 \\ 17 \text { - } 19 \text { Jan } \end{gathered}$	$\begin{gathered} \text { WEEK } 2 \\ 22-26 \text { Jan } \end{gathered}$	$\begin{gathered} \text { WEEK 3 } \\ 29 \text { Jan - } 2 \text { Feb } \end{gathered}$	WEEK 4 $5-9$ Feb	$\begin{gathered} \text { WEEK } 5 \\ 12-16 \text { Feb } \end{gathered}$	$\begin{gathered} \text { WEEK } 6 \\ 19-23 \text { Feb } \end{gathered}$	WEEK 7 26 Feb-1 March	WEEK 8 4-8 March	WEEK 9 11-15 March	WEEK 10 18-20 March
Topics	Number patterns, sequences and series				Functions: Formal definition; inverses, exponential and logarithmic			Trigonometry		
School days	18 days				15 days			13 days (+3 in Term 2)		
SBA	Investigation or project				\&			Test (content term 1)		

2024 National RATP: MATHEMATICS GRADE 12 - TERM 2 (52 days)

TERM 2	WEEK 1 $3-5 \text { April }$	$\begin{gathered} \text { WEEK } 2 \\ 8-12 \text { April } \end{gathered}$	$\begin{gathered} \text { WEEK } 3 \\ \text { 15-19 April } \end{gathered}$	$\begin{gathered} \text { WEEK } 4 \\ 22-26 \text { April } \end{gathered}$	WEEK 5 29 April - 3 May	$\begin{aligned} & \text { WEEK } 6 \\ & 6 \text { - } 10 \text { May } \end{aligned}$	$\begin{gathered} \text { WEEK } 7 \\ 13 \text { - } 17 \text { May } \end{gathered}$	$\begin{gathered} \text { WEEK } 8 \\ 20-24 \text { May } \end{gathered}$	$\begin{gathered} \text { WEEK } 9 \\ 27-31 \text { May } \end{gathered}$	WEEK 10 $3-7 \text { Jun }$	WEEK 11 $10-14 \text { June }$
Topics	Trigonometry	Euclidean Geometry		Analytical Geometry		Differential Calculus including Polynomials					
School days	3 days	10 days		9 days		15 days			15 days		
SBA	Assignment								JUNE EXAM / CONTROL TEST		

2024 National RATP: MATHEMATICS GRADE 12 - TERM 3 (53 days)

TERM 3	WEEK 1 $9-12 \text { July }$	WEEK 2 $15 \text { - } 19 \text { July }$	$\begin{gathered} \text { WEEK } 3 \\ 22-26 \text { July } \end{gathered}$	WEEK 4 29 July - 2 Aug	WEEK 5 5-8 Aug	$\begin{aligned} & \text { WEEK } 6 \\ & 12-16 \text { Aug } \end{aligned}$	$\begin{gathered} \text { WEEK } 7 \\ 19-23 \text { Aug } \end{gathered}$	$\begin{gathered} \text { WEEK 8 } \\ 26-30 \text { Aug } \end{gathered}$	$\begin{aligned} & \text { WEEK } 9 \\ & 2-6 \text { Sept } \end{aligned}$	WEEK 10 9-13 Sept	WEEK 11 $16-20 \text { Sept }$
Topics	Calculus / Optimisation	*Finance, growth and decay		Statistics		Probability/Counting Principles		Revision			
School days	4 days	10 days		9 days		10 days		5 days	15 days		
SBA	Test								TRIAL EXAMS		

TERM 4	WEEK 1 $1-4 \text { Oct }$	$\begin{aligned} & \hline \text { WEEK } 2 \\ & 7-11 \text { Oct } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { WEEK } 3 \\ & 14-18 \text { Oct } \end{aligned}$	$\begin{gathered} \text { WEEK } 4 \\ 21-25 \text { Oct } \end{gathered}$	WEEK 5 $28 \text { Oct - } 1 \text { Nov }$	$\begin{aligned} & \text { WEEK } 6 \\ & 4-8 \text { Nov } \end{aligned}$	WEEK 7 11-15 Nov	$\begin{gathered} \text { WEEK } 8 \\ 18-22 \text { Nov } \end{gathered}$	$\begin{gathered} \hline \text { WEEK 9 } \\ 25-29 \text { Nov } \end{gathered}$	$\text { WEEK } 10$	$\begin{aligned} & \text { WEEK } 11 \\ & 9 \text { - } 11 \text { Dec } \end{aligned}$	EXAM	
Topics								al Examinatio				PAPER 1150 marks 3 hours	
School days								33 days				Algebraic expressions, equations and inequalities	25
												Number patterns Functions and graphs Finance, growth and decay Differential Calculus Counting Principle and Probability	25 35 15 35 15
TOTAL NUMBER OF SBA TASKS													
Term 1 Investigation / Project (15\%) and Test (15\%)												Statistics	20
Term 2 Assignment (15\%) and June Exam / Control Test (15\%)												Analytical Geometry	40
Term 3 Test (15%) and Trial (25%)												Trigonometry	50
Term 4 Final Examination												Euclidean Geometry	40

2024 National RATP: MATHEMATICS GRADE 12 - TERM 1

2024 National RATP: MATHEMATICS GRADE 12 - TERM 2

TERM 2	3 - 5 April	8-12 April 15-19 April	22-26 April 29 April - 3 May	6-10 May 13-17 May $\quad 20$ - 24 May	27-31 May	3-7 June	$10-14$ June
Topics	TRIGONOMETRY	EUCLIDEAN GEOMETRY	ANALYTICAL GEOMETRY	DIFFERENTIAL CALCULUS INCLUDING POLYNOMIALS	JUNE EXAM / CONTROL TEST		
	CONTINUED FROM TERM 1: 3. Solve problems in two and three dimensions applying the sine, cosine and area rules.	1. Revise earlier work on the necessary and sufficient conditions for polygons to be similar. 2. Prove (accepting results established in earlier grades): - **that a line drawn parallel to one side of a triangle divides the other two sides proportionally (and the Midpoint Theorem as a special case of the converse of this theorem); - **that equiangular triangles are similar; - that triangles with sides in proportion are similar; and - the Pythagorean Theorem by similar triangles The proofs of theorems labelled with ** are examinable. (See the 2021 Exam Guidelines)	1. Revise the following including grade 10 concepts: - the equation of a line through two given points; - the equation of a line through one point and parallel or perpendicular to a given line; and - The inclination (θ) of a line, where $m=\tan \theta$ is the gradient of the line ($0^{\circ} \leq \theta \leq 180^{\circ}$) 2. Apply the equation $(x-a)^{2}+(y-b)^{2}=r^{2}$ that defines a circle with radius r and centre $(a ; b)$. 3. Determine the equation of a tangent to	1. Factorise third-degree polynomials. Apply the Remainder and Factor Theorems to polynomials of degree at most 3 (no proofs required). 2. An intuitive understanding of the limit concept, in the context of approximating the rate of change or gradient of a function at a point. 3. Use limits to define the derivative of a function f at any x : $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ Generalise to find the derivative of f at any point x in the domain of f, i.e., define the derivative function $f^{\prime}(x)$ of the function $f(x)$. Understand intuitively that $f^{\prime}(a)$ is the gradient of the tangent to the graph of f at the point with x-coordinate a. 4. Using the definition (first principle), determine the derivative, $f^{\prime}(x)$ where a, b and c are constants: $4.1 f(x)=a x^{2}+b x+c$; $4.2 f(x)=a x^{3}$; $4.3 f(x)=\frac{a}{x}$ for $x \neq 0$ $4.4 f(x)=c$. 5. Use the formula, $\frac{d}{d x}\left(a x^{n}\right)=a n x^{n-1}$ (for any real number n) together with the rules $5.1 \frac{d}{d x}[f(x) \pm g(x)]=\frac{d}{d x}[f(x)] \pm \frac{d}{d x}[g(x)]$ and $5.2 \frac{d}{d x}[k f(x)]=k \frac{d}{d x}[f(x)], \quad(k$ a constant $\left.)\right]$ 6. Determine equations of tangents to graphs of functions. 7. Introduce the second derivative of $f(x)$: $f^{\prime \prime}(x)=\frac{d}{d x}\left(f^{\prime}(x)\right)$ and how it determines the concavity of a function. 8. Sketch graphs of cubic polynomial functions using differentiation to determine the coordinates of stationary points, and points of inflection (where concavity changes). Also, determine the x-intercepts of the graph using the factor theorem and other techniques. 9. Optimisation: shifted to Term 3			
Date completed							
SBA			Assignment		JUNE EXAM / CONTROL TEST		

2024 Grade 12 Mathematics

* 1 week less than in 2023

2024 National RATP: MATHEMATICS GRADE 12 - TERM 4

Grade 10

Grade 11

Grade 12
TERM 1: 17/1-20/3 (10 weeks/46 days)

	Weeks	School days	Dates		Weeks	School days	Dates		Weeks	School days	Dates
Algebraic expressions	4	18	17/1	Exponents \& Surds	2	8	17/1	Number Patterns, Sequences \& Series	4	18	17/1
Exponents, equations \& inequalities	*3	15	12/2	Equations \& Inequalities	4	20	29/1	Functions (formal definition; inverses,	3	15	12/2
Trigonometry (\#1) (trig definitions in $\mathrm{rt}-\angle^{\mathrm{d}} \Delta^{\mathrm{s}}$ \& for $0^{\circ} \leq \theta \leq 360^{\circ}$; reciprocals; special \angle^{s} : 0° to 360°; equations)	3	13	4/3	Trigonometry (\#1) (reduction formulae, equations \& general solutions)	*4	18	26/2	exponential and logarithmic functions) Trigonometry (\#1) (revision \& compd \angle^{s}) $\quad+1$ in Term Algebra	$\begin{gathered} 3 \\ +3 \\ \hline \end{gathered}$	${ }^{13}$	4/3

TERM 2: 3/4-14/6 (11 weeks/52 days)

Euclidean Geometry	*3	13	3/4	Euclidean Geometry	4	18	3/4	Trigonometry (\#2) (2D/3D)	1	3	3/4
Analytical Geometry	2	9	22/4	Analytical Geometry	2	9	29/4	Euclidean Geometry	2	10	8/4
Functions (str line, parab, hyp)	3	15	6/5	Functions (str line, parab, hyp)	2	10	13/5	Analytical Geometry	2	9	22/4
JUNE EXAM / CONTROL TEST	3	15	27/5	JUNE EXAM / CONTROL TEST	3	15	27/5	Differential Calculus, incl. Polynomials	3	15	6/5
								JUNE EXAM / CONTROL TEST	3	15	27/5

TERM 3: 9/7-20/9 (11 weeks/53 days)

Functions (exponential \& trigonometric)	3	14	9/7	Functions (exponential \& trigonometric)	3	14	9/7	Calculus: Optimisation	1	4	9/7
Trigonometry (\#2) (2D)	2	9	29/7	Trigonometry (\#2) (sine, cosine and area rules)	*2	9	29/7	Finance, growth \& decay, \& Annuities	*2	10	15/7
Statistics	*2	10	12/8					Statistics (regression \& correlation)	2	9	29/7
Probability	*2	10	26/8	Statistics	2	10	12/8	Counting \& Probability	2	10	12/8
Finance and growth	*2	10	9/9	Probability	*2	10	26/8	Revision	1	5	26/8
				Finance, Growth \& Decay	*2	10	9/9	TRIAL EXAMS	3	15	2/9

TERM 4: 1/10-11/12 (11 weeks/52 days)

Measurement	*1	4	1/10	Number Patterns	*2	9	1/10	Revision	4	19	1/10
Number Patterns	1	5	7/10	Revision of Measurement	1	5	14/10	EXTERNAL EXAMS		33	28/10
Revision of Algebra	1	5	14/10	Revision of Algebra	1	5	21/10				
Revision of Trigonometry	1	5	21/10	Revision of Trigonometry	1	5	28/10	This is purely a suggested guide, having consulted widely, adjusted for 2024, and, based on the 2023/2024 DBE ATPs. Compiled by TAS			
Revision of Functions	1	5	28/10	Revision of Geometry	1	5	4/11				
Revision of Geometry and	1	5	4/11	FINAL EXAMS	3	15	11/11				
Analytical Geometry	3	15	11/11	Admin$*_{1}$ week less than in 2023	2	8	2/12				
Admin	2	8	2/12								

