FINAL COLLECTIVE RESPONSE

TAS MATHS LITERACY REVIEW \rightarrow NSC 2023-PAPER 1 \& 2

HOSTED BY GRETEL LAMPE
PRESENTED BY SUSAN NICOL
GUESTS BRONWYN ADONIS-MAARMAN (AMESA) PANEL REVIEWERS

GENERAL OVERVIEW OF PAPERS

CHALLENGING QUESTIONS
 PAPER 1
 THE
 ANSWER
 SERIES Your Key to Exam Success

QUESTION 1.1.5

Spotify is a legal way to listen to music using the internet. It is also referred to as streaming music online.

TABLE 1 below shows different categories of users and items streamed for three different sessions (A, B and C) on 18 February 2023, using the Spotify mobile app*.

TABLE 1: STREAMING PER CATEGORY ON 18 FEBRUARY 2023

CATEGORIES	SESSION		
	\mathbf{A}	\mathbf{B}	\mathbf{C}
Free users	8120031	8120908	8120970
Paid users	690160	690164	690164
Number of songs	88704344	88705985	88706141
Number of music artists	6089733	6089852	6089862
Music albums	12929392	12929939	12929976

[Adapted from https://stats.fm]

NOTE:

*app $=$ application
1.1.5 Determine, as a unit ratio, in the form 1:..., the number of paid users to the number of free users during session A.

Paid users : Free users
690 160:8120031
1:11,7654...
₹ $1: 11$

- Given discrete data (no. of users) should the ratio be rounded off - and if so, rounded up or down?
- Isn't this question a Level 2 question - when the whole of Question 1 should be Level 1 questions only?

REVIEW OF QUESTION 1

QUESTION 2.1.4
 Answer
 SERIES Your Key to Exam Success

David is a 68-year-old man who works at a grocery store in Swellendam.
ANNEXURE A shows an extract of David's Bank Statement for the period 1 November 2022 to 1 December 2022. Some amounts have been omitted.
2.1.4 The fixed monthly service fee of $R 110,00$ on $30 / 11 / 2022$ includes VAT of 15%.

The same service fee, excluding VAT, was charged on 30/11/2017.
Determine the service fee amount, including VAT, that would have been paid on 30/11/2017.

Same service fee (of R110 excl. 15\% VAT in 2022)
$=$ R110 $\div \mathbf{1 , 1 5}$
= R95,65

Service fee (incl. 14\% VAT in 2017)

```
= R95,65 x 1,14
= R109,04
```


TABLE 4 shows the financial overview of Swellendam Municipality (in R'000), including the income and expenditure, the original budgeted amount, the adjusted budgeted amount and the actual amount.

Due to over- or under-spending, this original budgeted amount is reviewed during the year and adjusted accordingly.

TABLE 4: FINANCIAL OVERVIEW OF SWELLENDAM MUNICIPALITY
INCOME R'000

DETAILS	Original budgeted amount	Adjusted budgeted amount	Actual amount
Grants	71396	111769	68286
Taxes, levies and tariffs	180456	\ldots	180702
Other	61940	48152	68594
TOTAL	313792	$\mathbf{3 4 0 6 8 8}$	$\mathbf{3 1 7 5 8 2}$
EXPENDITURE R'000			
	Original budgeted amount	Adjusted budgeted amount	Actual amount
TOTAL	322891	316678	\mathbf{Z}

NET SURPLUS/DEFICIT R'000

	Original budgeted amount	Adjusted budgeted amount	Actual amount
TOTAL	(9099)	24010	Y
[Adapted from Annual Report Swellendam Municipality]			

2.3.3 Give a reason why the amount (9099) is shown in brackets. (2)
(9 099) in brackets indicates a deficit/loss, i.e. Expenditure > Income to the value of R9 099000

Loss = Expenditure - Income (in thousands)

$$
\text { = R322 } 891 \text { - R313 } 792
$$

$$
=\text { R9 } 099 \square
$$

Q 2.3.4

- It will be difficult for some learners to firstly understand how the 3 separate tables (income, expenditure \& net surplus/deficit) all relate to each other; and then to extract the required information for the specific question
- A lot of information to unpack and interpret in one question

REVIEW OF QUESTION 2

Overnutrition occurs when there is an excessive intake of dietary energy, resulting in overweight or obese people.

The double bar graph below shows the percentages of children in two age groups who are overweight or obese in South Africa. The following descriptors have been used: male, female, urban and rural.

Children in two age groups who are overweight or obese

3.1.3 Compare and comment on the urban and rural descriptors of the two age groups.

- Urban \& Rural: 5-17 years old are more overweight/obese than the under 5 year olds ($20,1 \%$ vs $13,2 \%$ and $16,3 \%$ vs $13,5 \%$ respectively)
- 5-17 years olds: Urban descriptor is $3,8 \%$ higher than the rural descriptor (20,1\% - 16,3\%)
- Urban: Difference between under 5 year olds and the 5-17 year olds is $6,9 \%(20,1 \%-13,2 \%)$
- Rural: Difference between under 5 year olds and the 5-17 year olds is $2,8 \%(16,3 \%-13,5 \%)$

COMMENTS

- How many comments are needed for this question?
- How would you allocate the marks, since it is a 3 mark question?

Overnutrition occurs when there is an excessive intake of dietary energy, resulting in overweight or obese people.

The double bar graph below shows the percentages of children in two age groups who are overweight or obese in South Africa. The following descriptors have been used: male, female, urban and rural.

Children in two age groups who are overweight or obese

3.1.4 In a rural school, there are 795 learners in the age group 5 to 17 years old.

Calculate the number of learners who are NOT overweight or obese.

Rural 5-17 year olds: \% NOT overweight
$=100 \%-16,3 \%$
= 83,7\%
\therefore Number of rural, NOT overweight $5-17$ years olds
$=\frac{83,7}{100} \times 795$
$=665,415$
≈ 665 learners

COMMENTS

- Learners need to understand that 'NOT = 100\% - actual'

Overnutrition occurs when there is an excessive intake of dietary energy, resulting in overweight or obese people.

The double bar graph below shows the percentages of children in two age groups who are overweight or obese in South Africa. The following descriptors have been used: male, female, urban and rural.

Children in two age groups who are overweight or obese

3.1.5 Determine the probability, as a fraction, of randomly selecting a female who is under 5 years old and not overweight or obese.

$$
\begin{aligned}
& \% \text { Female under } 5 \text { years \& NOT overweight } \\
& =100 \%-11,1 \% \\
& =88,9 \% \\
& \therefore \text { Probability (expressed as a fraction) } \\
& =\frac{88,9}{100} \\
& =\frac{889}{1000}
\end{aligned}
$$

QUESTION 3.2.2

Shown below is a growth chart for boys, from birth to 24 months. Also shown on this chart is the head circumference-for-age and part of the weight-for-lengthpercentiles.

The measurements for a boy at $1,9,12$ and 18 months have been plotted on the chart by a nurse at the clinic.
3.2.2 Identify the month(s) in which the boy was below the $50^{\text {th }}$ percentile.

> Month(s) < 50 th percentile:

1-8 months \& 18-24 months

- Growth chart is too small - especially for special needs learners
- The intervals on the growth chart were not clearly aligned with the bars
- It wasn't clear to identify the months or time periods required - so more points could have been plotted on the graph
- If learners needed to report the growth periods or more than 1 month, then the mark allocation of $\mathbf{2}$ marks seems too little?

Birth to 24 months: Boys
\qquad Weight-for-length percentiles \qquad

[^0]A study was done to investigate the relationship between the head circumference and the nutritional status of some children under 2 years old. The box and whisker plots below show the head circumference percentiles (HCP) of these children based on their nutritional status.

A total of 142 children were included in this study.

- $9,15 \%$ were malnourished.
- 129 children had normal nutritional status.
- There was a greater representation of younger children with more than 50% between 1 and 8 months of age.

HEAD CIRCUMFERENCE PERCENTILES IN NORMAL AND MALNOURISHED CHILDREN UNDER TWO YEARS OLD

3.3.1 Write down the percentage of malnourished children with a head circumference below the 33,5 percentile.

Malnourished children HCP < 33,5 percentile $=75 \%$ (Q3)
OR
75% of $9,15 \%$?

- The ' $9,15 \%$ were malnourished' is a confusing and unnecessary piece of information
- Note the sample size was quite small to extrapolate general information about a population

QUESTION 3.3.2

A study was done to investigate the relationship between the head circumference and the nutritional status of some children under 2 years old. The box and whisker plots below show the head circumference percentiles (HCP) of these children based on their nutritional status.

A total of 142 children were included in this study.

- $9,15 \%$ were malnourished.
- 129 children had normal nutritional status.
- There was a greater representation of younger children with more than 50% between 1 and 8 months of age.

HEAD CIRCUMFERENCE PERCENTILES IN NORMAL AND MALNOURISHED CHILDREN UNDER TWO YEARS OLD

3.3.2 Calculate the number of children that were below the median head circumference in the children with normal nutritional status. (3)

Number of children < median HC with normal nutritional status

$$
\begin{aligned}
& =\frac{50}{100} \times 129 \\
& =64,5 \\
& \approx 64 \text { children }
\end{aligned}
$$

- Discrete data is given, so do we round up or down for the number of children?
- Combining head circumference percentiles with percentages of box-and-whisker plots is very confusing i.e. Q2 = 50\% but the HCP at Q2 $=54^{\text {th }}$ percentile

QUESTION 3.3.3

A study was done to investigate the relationship between the head circumference and the nutritional status of some children under 2 years old. The box and whisker plots below show the head circumference percentiles (HCP) of these children based on their nutritional status.

A total of 142 children were included in this study.

- $9,15 \%$ were malnourished.
- 129 children had normal nutritional status.
- There was a greater representation of younger children with more than 50% between 1 and 8 months of age.

HEAD CIRCUMFERENCE PERCENTILES IN NORMAL AND MALNOURISHED CHILDREN UNDER TWO YEARS OLD

3.3.3 Comment on the selection of the sample of children selected.

Sample is not representative of every age group.
OR
Sample is skewed - as 50% of data represents 1 - 8 months while the other 50\% represents 9 months - 2 years.

COMMENTS

REVIEW OF QUESTION 3

The Swartz family received news that their daughter was selected to go on a sports tour to Bloemfontein. They compared the in-store and online prices of two supermarkets for items needed to prepare meals for the bus tour.

TABLE 5 below shows the in-store and the online prices of $\mathrm{P} \& \mathrm{P}$ store and W\&W store for some items.

TABLE 5: PRICE (IN RAND) OF TWO STORES
IN-STORE VS ONLINE PRICES

	P\&P STORE		W\&W STORE				
ITEMS	In-store price \mathbf{R}	Online price \mathbf{R}	In-store price \mathbf{R}	Online price \mathbf{R}			
Apples	16,50	16,50	14,99	21,99			
Bread	6,50	6,99	11,95	13,45			
Cabbage	10,99	10,99	12,99	12,99			
Coca-Cola	13,50	15,99	15,95	15,95			
Eggs	12,95	12,95	20,99	20,99			
Cake flour	32,99	30,99	13,95	14,95			
Mealie-meal	17,49	17,48	18,95	19,95			
Margarine	17,95	16,95	23,99	23,99			
Milk	22,79	22,79	27,95	27,95			
Rice	18,29	18,29	22,95	24,95			
Sugar	23,90	26,99	29,95	29,95			
Tea	14,89	14,89	15,95	15,95			
Delivery	50,00						50,00
Total	$\mathbf{2 0 8 , 7 4}$	$\mathbf{2 6 1 , 8 0}$	$\mathbf{2 3 0 , 5 6}$	$\mathbf{2 9 3 , 0 6}$			

4.1.1 Write down the modal in-store price for $\mathrm{P} \& \mathrm{P}$ store.

Modal in-store price for P\&P store: None

- There was no mode - was this an error?
- Learners may have wasted time re-checking and re-checking to find a mode

P\&P store (R4,99 each)	W\&W store (R5,95 each)	SPR store (R3,49 each)	FLM store (R2,50 each)

The Swartz family also decided to buy and resell doughnuts in packets of four in order
to fund the tour. They sourced the prices of doughnuts at four stores.
Their target was to sell 100 packets of doughnuts. The fixed cost for the buying and
re-packaging of the doughnuts was R201,00.
The graphs for the income and expenses for the buying, re-packaging and selling of
the packets of doughnuts, as well as the store prices of the doughnuts, are given in
ANNEXURE C.
[Adapted from www.eatout.co.za]
4.2.2 The total cost for buying and re-packaging 50 packets of doughnuts is R701,00.
Determine, with calculations, from which store they bought the doughnuts.

Total no. of doughnuts $=4 \times 50$ packets $=200$ doughnuts

Total cost = Variable costs + Fixed costs
R701 = (No. of doughnuts x Cost per doughnut) + R201
R500 = $200 \times$ Cost per doughnut
\therefore Cost per doughnut $=\mathbf{R} 500 \div \mathbf{2 0 0}$
= R2,50
\therefore Doughnuts were bought from the FLM store

SERIES Your Key to Exam Success

QUESTION 4.2.4

The Swartz family also decided to buy and resell doughnuts in packets of four in order to fund the tour. They sourced the prices of doughnuts at four stores.

Their target was to sell 100 packets of doughnuts. The fixed cost for the buying and re-packaging of the doughnuts was R201,00.

The graphs for the income and expenses for the buying, re-packaging and selling of the packets of doughnuts, as well as the store prices of the doughnuts, are given in ANNEXURE C.
[Adapted from www.eatout.co.za]
4.2.4 If the selling price increased, write down, with a reason, whether the break-even point would now be lower or higher.

Break-even point would be lower if the selling price increased.

- Income straight line would have a steeper slope, so it would intersect the expenses straight line graph sooner - before 20 packets
- If the selling price increases, then the income climbs faster.
\therefore The break-even point is reached quicker, as fewer packets of doughnuts need to be sold

REVIEW OF QUESTION 4

People take flights daily, either locally, nationally or internationally.
TABLE 6 below shows the average daily flights taken in the top 10 countries, the top 10 aircraft operators for 2022 and the percentage (\%) change from 2019. Some values have been omitted.

TABLE 6: TOP 10 COUNTRIES AND AIRCRAFT OPERATORS

COUNTRY	Average daily flights		AIRCRAFT OPERATORS	Average daily flights	
	2022	$\begin{gathered} \text { \% } \\ \text { change } \\ \text { from } \\ 2019 \end{gathered}$		2022	$\begin{aligned} & \begin{array}{c} \% \\ \text { change } \\ \text { from } \\ 2019 \end{array} \end{aligned}$
United Kingdom	4728	-20\%	Ryanair Group	2566	+9\%
Germany	4293	-25\%	Easy Jet Group	1347	-20\%
Spain	4277	-9\%	Turkish Airlines	1249	-7\%
France	3763	A	Lufthansa Airlines	1067	-29%
Italy	3201	-12\%	Air France Group	952	-21\%
Turkey	2634	-8\%	KLM Group	709	-18\%
Netherlands	1431	- 15%	Wizz Air Group	667	+13\%
Greece	1327	-1\%	British Airways Group	B	-30\%
Norway	1283	-10\%	Vueling	547	-10\%
Switzerland	1125	-15\%	SAS Group	536	-35\%
[Adapted from www.eurocontrol.int/sites]					

5.1.2 France operated 4290 average daily flights in 2019.

Determine missing value \mathbf{A}, rounded to the nearest whole number.

$$
\begin{aligned}
\% \text { change }(A) & =\frac{\text { Flights in } 2022-\text { Flights in } 2019}{\text { Flights in } 2019} \times 100 \% \\
& =\frac{3763-4290}{4290} \times 100 \% \\
& =\frac{-527}{4290} \times 100 \% \\
& =-12,284 \ldots \%
\end{aligned}
$$

COMMENTS

- Learners would need to remember the \% change formula
- The negative \% change would have confused many learners

People take flights daily, either locally, nationally or internationally.
TABLE 6 below shows the average daily flights taken in the top 10 countries, the top 10 aircraft operators for 2022 and the percentage (\%) change from 2019. Some values have been omitted.

TABLE 6: TOP 10 COUNTRIES AND AIRCRAFT OPERATORS

COUNTRY	Average daily flights		AIRCRAFT OPERATORS	Average daily flights	
	2022	$\%$ change from 2019		2022	$\%$ change from 2019
United Kingdom	4728	-20\%	Ryanair Group	2566	+9\%
Germany	4293	-25\%	Easy Jet Group	1347	-20\%
Spain	4277	-9\%	Turkish Airlines	1249	-7\%
France	3763	A	Lufthansa Airlines	1067	-29\%
Italy	3201	-12\%	Air France Group	952	-21\%
Turkey	2634	-8\%	KLM Group	709	-18\%
Netherlands	1431	- 15\%	Wizz Air Group	667	+13\%
Greece	1327	-1\%	British Airways Group	B	-30\%
Norway	1283	-10\%	Vueling	547	-10\%
Switzerland	1125	-15\%	SAS Group	536	-35\%
[Adapted from www.eurocontrol.int/sites]					

5.1.3 Calculate the range for the \% change from 2019 for the aircraft operators.

Rate \% change for 2019 aircraft operators $=13 \%-(-35 \%)$

$$
\begin{aligned}
& =13 \%+35 \% \\
& =48 \%
\end{aligned}
$$

People take flights daily, either locally, nationally or internationally.
TABLE 6 below shows the average daily flights taken in the top 10 countries, the top 10 aircraft operators for 2022 and the percentage (\%) change from 2019. Some values have been omitted.

TABLE 6: TOP 10 COUNTRIES AND AIRCRAFT OPERATORS

COUNTRY	Average daily flights		AIRCRAFT OPERATORS	Average daily flights	
	2022	$\begin{gathered} \text { \% } \\ \text { change } \\ \text { from } \\ 2019 \end{gathered}$		2022	$\begin{gathered} \% \\ \text { change } \\ \text { from } \\ 2019 \end{gathered}$
United Kingdom	4728	-20\%	Ryanair Group	2566	+9\%
Germany	4293	-25\%	Easy Jet Group	1347	-20\%
Spain	4277	-9\%	Turkish Airlines	1249	-7\%
France	3763	A	Lufthansa Airlines	1067	-29%
Italy	3201	-12\%	Air France Group	952	-21\%
Turkey	2634	-8\%	KLM Group	709	-18\%
Netherlands	1431	- 15%	Wizz Air Group	667	+13\%
Greece	1327	-1\%	British Airways Group	B	-30\%
Norway	1283	-10\%	Vueling	547	-10\%
Switzerland	1125	-15\%	SAS Group	536	-35\%
[Adapted from www.eurocontrol.int/sites]					

5.1.4 Calculate missing value \mathbf{B}, if the mean number of flights for aircraft operators for 2022 is $1028,2$.

$$
\begin{aligned}
\text { Mean } & =\frac{\text { Sum of all values }}{\text { No. of values in data set }} \\
1028,2 & =\frac{2566+1347+1249+1067+952+709+667+B+547+536}{10} \\
10282 & =9640+B \\
\therefore B & =10282-9640 \\
& =642
\end{aligned}
$$

- Learners needed to remember the mean formula
- Reverse calculation to find B would have been a challenge

REVIEW OF QUESTION 5

Q 5.2

TABLE 7: CURRENCY CONVERSION FACTORS FOR FOUR COUNTRIES ON 19 MARCH 2023

CURRENCY				UNITS PER NIS	NIS PER UNIT
Thai baht (()	9,3223584	0,107269			
Jordanian dinar (JOD)	0,19368367	5,16306			
South African rand (ZAR)	5,0428413	0,198301			
United States dollar (US\$)	0,27317867	3,66061			

- The context of 'Mandatory Palestine' and 'New Israel' was perhaps insensitive and upsetting to learners. Perhaps learners may even leave this question out due to moral beliefs?

CHALLENGING QUESTIONS
 PAPER 2
 THE
 ANSWER
 SERIES Your Key to Exam Success

[Adapted from https://scoutwiki.scouts.org.za/wiki/Strip maps]
1.2.2 Name the street that goes over Klip River.

Iffley Street
Winchester Street appears to curve into Iffley Street?

COMMENTS

- It was not clear that the words represented streets - some thought it represented areas
- Strip chart was not clear nor large enough
- Iffley could be interpreted as the name of the bridge or the name of the street that crosses the bridge
- Learners are familiar with vertical strip charts been given, not horizontal ones - which may have thrown some learners

QUESTION 1.3.2 (b)
1.3.2 Use the steps to assemble a chair to identify the following:
(b) The number of screws used in step 4
(2)

4 screws (H)

- Assembly diagram was unclear and needed to be enlarged
- The $4^{\text {th }}$ screw in the centre of the chair cannot be easily seen
- Some also thought that an additional 2 screws would be required to add on the chair arms, which are slightly visible in Step 4
- Last year was the assembly diagram of a garden chair and this year it is a work chair - perhaps we need more variability

Illustrated below are the steps and components needed to assemble a chair. The components to assemble the chair are labelled alphabetically ($\mathrm{A}-\mathrm{K}$).

COMPONENTS NEEDED TO ASSEMBLE THE CHAIR					
A Chair back	$\begin{gathered} \text { B } \\ \text { Chair seat } \end{gathered}$	C Seat mechanism	$\begin{gathered} \text { D } \\ \text { Gas lift } \end{gathered}$	E Chair base	$\begin{gathered} \mathrm{F} \\ \text { Chair arms } \end{gathered}$
	\square	5	\square		Fbef
$\begin{gathered} \mathbf{G} \\ \text { Casters } \end{gathered}$	$\begin{gathered} \mathrm{H} \\ \text { Screws } \end{gathered}$	$\begin{gathered} \text { I } \\ \text { Screws } \end{gathered}$	$\begin{gathered} \mathrm{J} \\ \text { Screws } \end{gathered}$	$\begin{gathered} \mathrm{K} \\ \text { Washer } \end{gathered}$	L Assembly tool: Allen key
0	-6)	0	- ${ }^{\text {d }}$	(0)	1

REVIEW OF QUESTION 1

QUESTION 2.2

Option 1

2.2 Calculate the maximum number of packed bottled water that can fit on this half of the table.
(8)

Half of the length of refreshment table

$$
\begin{aligned}
& =290 \mathrm{~cm} \div 2 \\
& =145 \mathrm{~cm}
\end{aligned}
$$

orientation on the table

TABLE

$$
\frac{49 \mathrm{~cm}}{36,4 \mathrm{~cm}}=1,34=1 \text { pack }
$$

QUESTION 2.2

Option 2

A single layer of the bottled water will be packed on a rectangular base. The packed bottled water will occupy half of the length of the rectangular refreshment table and will not overlap the edges of the table.

Shown below are the pictures and the dimensions of the top of the rectangular refreshment table and the packed bottled water.

DIMENSIONS OF THE RECTANGULAR REFRESHMENT TABLE TOP

PACKED BOTTLED WATER (Rectangular base packaging)

Refreshment table

Width $=49 . \mathrm{cm}$
Width $=49 . \mathrm{cm}$
Length $=290 \mathrm{~cm}$
Length $=290 \mathrm{~cm}$
 COMMENTS

- Learners would need to check both orientations of packages - they might not even realize that there might be a difference in their answers with different orientations
- Learners may have calculated the number of bottles of water - instead of the packages of water - and wasted a lot of time
- The wording of the question was misleading - it should have perhaps clarified by asking which orientation would have provided a maximum number of bottles and justify by means of calculations

$$
\frac{145 \mathrm{~cm}}{36,4 \mathrm{~cm}}=3,98=3 \text { packs } \longleftrightarrow \longleftrightarrow \begin{aligned}
& \text { length of table }(145 \mathrm{~cm}) \\
& \text { i.e. } 36,4 \times 3=109,2 \mathrm{~cm}
\end{aligned}
$$

breadth of table (49 cm) i.e. $24,2 \times 2=48,4 \mathrm{~cm}$

$$
\therefore \text { Total no. of packs }=3 \times 2=6
$$

\therefore Maximum no. of packed bottled water $=6$

REVIEW OF QUESTION 2

| Andrew wants to erect a Vibracrete wall on the
 boundary of his property. | PICTURE OF A |
| :--- | :--- | :--- |
| The wall will consist of concrete posts with | |
| precast concrete slabs between them. | |
| The wall will have 12 posts planted into the | |
| ground using concrete. | |

3.2.3 The concrete is made from a mixture of cement, river sand and stone in the ratio illustrated below.

Cement	River Sand	Stone
50 kg	Dre	
1 Bag	2 Wheelbarrows	2 Wheelbarrows

$0,75 \mathrm{~m}^{3}$ of concrete requires 5,5 bags of cement. One level wheelbarrow full of river sand weighs 102 kg .
Calculate the mass of river sand needed to make $1 \mathrm{~m}^{3}$ of concrete.

Cement : River Sand

1 bag: 2 wheelbarrows
$50 \mathrm{~kg}: 204 \mathrm{~kg}$ (= $2 \times 102 \mathrm{~kg}$)

For $0,75 \mathrm{~m}^{3}$ of concrete, we need 5,5 bags of cement:
$=50 \mathrm{~kg} \times 5,5$ bags
$=275 \mathrm{~kg}$

Concrete : Cement
$0,75 \mathrm{~m}^{3}$: 275 kg $1 \mathrm{~m}^{3}$: ?
\therefore Cement needed $=275 \mathrm{~kg} \mathrm{x} \frac{4}{3}=366,67 \mathrm{~kg}$

Cement : River Sand

$$
50 \mathrm{~kg}: 204 \mathrm{~kg}
$$

$366,67 \mathrm{~kg}$: ?
\therefore River Sand needed $=204$ kg x 7,33 $=1496$ kg

OR

```
Cement : River Sand
    1 bag:2 wheelbarrows
5,5 bags: 11 bags (= 2 x 5,5 bags)
Weight of 11 bags of cement = 11 x 102 kg=1122 kg
Concrete : Cement
    0,75 m}\mp@subsup{}{}{3}:1122 k
        1 m}\mp@subsup{}{}{3}\mathrm{ :?
Cement needed = 1 122 kg x 4}=14496 k
```

Andrew wants to erect a Vibracrete wall on the boundary of his property.	PICTURE OF A
The wall will consist of concrete posts with	
precast concrete slabs between them.	
The wall will have 12 posts planted into the	
ground using concrete.	VIBRACRETE WALL
On top of each post, he will place a post cap.	
For each post, Andrew digs a square hole in the	
ground with a side length of 30 cm and a depth of	
60 cm .	

3.2.3 The concrete is made from a mixture of cement, river sand and stone in the ratio illustrated below.

Cement	River Sand	Stone
40 kg	$\infty 8$	
1 Bag	2 Wheelbarrows	2 Wheelbarrows

$0,75 \mathrm{~m}^{3}$ of concrete requires 5,5 bags of cement. One level wheelbarrow full of river sand weighs 102 kg .
Calculate the mass of river sand needed to make $1 \mathrm{~m}^{3}$ of concrete.

- Many educators felt that it was unreasonable to ask such a complex ratio question
- A big challenge for many to work with two different ratios and then to relate them to each other
- 'Stone' was an added element that was unnecessary as it was not used

The square-based post cap has a side length of $15,24 \mathrm{~cm}$ and a constant height of $2,5 \mathrm{~cm}$.

The perpendicular height of the triangular face is $7,86 \mathrm{~cm}$, as shown in the diagram alongside.

DIMENSIONS OF THE POST CAP

NET OF THE FACES OF ONE OF THE POST CAPS TO BE PAINTED

$$
\longleftarrow 15,24 \mathrm{~cm} \rightarrow
$$

Andrew will paint two sides of each of the concrete posts (each is 125 mm wide and $1,6 \mathrm{~m}$ long) and all the outside faces of the post caps.

The following formulae may be used:
Area of a rectangle $=$ length \times width
Area of 12 posts (Q 3.3.1)
$=12 \times[2 \times(12,5 \mathrm{~cm} \times 160 \mathrm{~cm})]$
$=12 \times\left[2 \times 2000 \mathrm{~cm}^{2}\right]$
$=12 \times 4000 \mathrm{~cm}^{2}$
$=48000 \mathrm{~cm}^{2}$
3.3.2 Duncan stated that the total area of all the posts and the post caps to be painted was $52704 \mathrm{~cm}^{2}$, rounded to the nearest whole number.

Verify, showing ALL calculations, whether his statement is VALID.

Area of 1 square-base post cap to be painted $=4 \times(15,24 \mathrm{~cm} \times 2,5 \mathrm{~cm})$
$=4 \times 38,1 \mathrm{~cm}^{2}$
$=152,4 \mathrm{~cm}^{2}$
\therefore Area of 12 post cap bases $=12 \times 152,4 \mathrm{~cm}^{2}=1828,8 \mathrm{~cm}^{2}$
Area of 4 triangular faces to be painted
$=4 \times(1 / 2 \times 15,24 \mathrm{~cm} \times 7,86 \mathrm{~cm})$
$=4 \times 59,8932 \mathrm{~cm}^{2}$
$=239,57 \mathrm{~cm}^{2}$
\therefore Area of 12 triangular faces $=12 \times 239,57 \mathrm{~cm}^{2}=2874,84 \mathrm{~cm}^{2}$
Total area of all sides to be painted
$=48000 \mathrm{~cm}^{2}\left(\right.$ Ans. Q 3.3.1) $+1828,8 \mathrm{~cm}^{2}+2874,84 \mathrm{~cm}^{2}$
$=52703,64 \mathrm{~cm}^{2}$
$\approx 52704 \mathrm{~cm}^{2}$
\therefore Duncan's claim is VALID

- Many learners would have lost track with this multi-step question

The square-based post cap has a side length of $15,24 \mathrm{~cm}$ and a constant height of $2,5 \mathrm{~cm}$.

The perpendicular height of the triangular face is $7,86 \mathrm{~cm}$, as shown in the diagram alongside.

DIMENSIONS OF THE POST CAP

NET OF THE FACES OF ONE OF THE POST CAPS TO BE PAINTED

$$
\longleftarrow 15,24 \mathrm{~cm} \rightarrow
$$

Andrew will paint two sides of each of the concrete posts (each is 125 mm wide and $1,6 \mathrm{~m}$ long) and all the outside faces of the post caps.

The following formulae may be used:
Area of a rectangle $=$ length \times width
Area of a triangle $=\frac{1}{2} \times$ base \times perpendicular height
3.3.3 The spread of the pain is 12,46 litre $/ \mathrm{m}^{2}$.

Calculate how many litres of paint is needed to paint $52704 \mathrm{~cm}^{2}$.

$$
\begin{aligned}
52704 \mathrm{~cm}^{2} & =52704 \mathrm{~cm}^{2} \div(100)^{2} \\
& =5,2704 \mathrm{~m}^{2}
\end{aligned}
$$

\therefore No. of litres of paint $=12,46 \mathrm{l} / \mathrm{m}^{2} \times 5,2704 \mathrm{~m}^{2}$

$$
\begin{aligned}
& =65,67 \ell \\
& \approx 66 \ell
\end{aligned}
$$

- Many learners would not have remembered to square the conversion factor when converting between cm^{2} and m^{2}

REVIEW OF QUESTION 3

Andrew and Duncan went fishing for carp on a friend's farm.
NOTE: Carp is a large freshwater fish that can be eaten by humans.
3.1.1 A female carp can lay 2,7 million eggs. Write 2,7 million in full, using numerals only. (2)

- Translation discrepancy between the English and Afrikaans paper

Q 3.2 vants to erect a Vibracrete wall on the of his property.
The wall will consist of concrete posts with precast concrete slabs between them.

The wall will have 12 posts planted into the ground using concrete.
On top of each post, he will place a post cap.
For each post, Andrew digs a square hole in the ground with a side length of 30 cm and a depth of 60 cm .

PICTURE OF A

VIBRACRETE WALL

- The terminology of using 'posts' vs 'poles' may have confused $2^{\text {nd }}$ language users
- The fact that learners had to remember the '12 posts' from Question 3.2 to Question 3.3 could have been disadvantageous - as each sub-question should be a stand-alone question

The square-based post cap has a
side length of $15,24 \mathrm{~cm}$ and a
DIMENSIONS OF THE POST CAP constant height of $2,5 \mathrm{~cm}$.
The perpendicular height of the triangular face is $7,86 \mathrm{~cm}$, as shown in the diagram alongside.

Q 3.3

NET OF THE FACES OF ONE OF THE POST CAPS TO BE PAINTED

$$
\longleftarrow 15,24 \mathrm{~cm} \rightarrow
$$

Andrew will paint two sides of each of the concrete posts (each is 125 mm wide and $1,6 \mathrm{~m}$ long) and all the outside faces of the post caps.
The following formulae may be used:
Area of a rectangle $=$ length \times width
Area of a triangle $=\frac{1}{2} \times$ base \times perpendicular height

- Learners would have struggled to interpret the diagrams, especially the square-base post cap
- Learners had to take information from Question 3.2 (i.e. '12 posts') and remember to multiply their answers by 12
- Question should have been scaffolded and broken down into multiple steps

The girls participating in the fashion show need dresses that fit well. The fashion show uses an equal number of girls for each size.

ANNEXURE C shows a body type chart used to select the correct dress size.

BODY TYPE CHART											
Mass \longrightarrow	50 kg	55 kg	60 kg	65 kg	67 kg	70 kg	75 kg	80 kg	85 kg	90 kg	100 kg
Height \downarrow											
1,50 m	XS	S	S	M	1	1	XL	XL	XL	XL	XXL
1,55 m	XS	XS	S	M	M	TL	1	XL	XL	XL	XXL
1,60 m	XS	XS	S	S	M	L	L	I	XL	XL	XXL
1,65 m	XS	XS	S	S	M	T	10	$\sqrt{15}$	XL	XL	XXL
1,70 m	XS	XS	S	S	M	M			XL	XL	XXL
1,75 m	XS	XS	XS	S	S	M	M		XL	XL	XXL
Dress size	0-2	2-4	4-6	6-8	8-10	10-12	12-14	1414	16-18	18-20	20-22
Body size	XS	XS	S	S	M	M	M	L	${ }^{1}$	XL	XXL

4.2.5 Bonolo stated that the probability of randomly selecting a girl wearing a dress with body size smaller than XXL is 0,833 .

Verify, with calculations, whether her statement is VALID.

> P (smaller than XXL) = P (NOT XXL)
$=\frac{60}{66}=0,9091$
\therefore Statement is INVALID.
OR
$P($ smaller than XXL$)=\frac{5}{6}=0,833$
\therefore Statement is VALID.

- Learners needed to apply another 'NOT' scenario to probability
- The equal number of girls was confusing - and not clear how to use it
- Many educators answered with Option 1 - until the logic of the equal number of girls was explained - and then Option 2 was understood and accepted
- Unnecessarily difficult probability question

REVIEW OF QUESTION 4

- The body type chart would have been unfamiliar and to then couple it with the dress size chart towards the end of the paper - would have been a challenge for many

Alaska is one of the states in the USA. Anchorage is the largest city in Alaska.
ANNEXURE D shows a part of the globe indicating the shortest distances, in nautical miles, between Anchorage and a few selected cities in the world.

NOTE: 1 nautical mile $=1,151$ miles
$1 \mathrm{~km}=0,6215$ miles
5.3.3 Cargo needs to be shipped to Los Angeles to Honolulu and then from Honolulu to Tokyo.

Phenyo searched the internet to determine how long it would take the cargo to reach its destination. Shown below are the search results. Some information has been omitted.

OCEAN ROUTE	TIME	DISTANCE	
USLAX Los Angeles	USHNL Honolulu	10 days 4 hours	2607 nautical miles
USHNL Honolulu	JPYOK Tokyo	\ldots	3350 nautical miles

Left Honolulu on 24 September +13 days $=7$ October Left at 16:00 + 1 hour 40 minutes = 17:40

Arrival date and time: 7 October at 17:40

COMMENTS

- Multi-step time conversions would have been challenging
- Many learners would have added in the '10 days 4 hours' if they had not read carefully
- There are variations in answers in the final arrival time - of up to 5 minutes depending on the rounding off that is used when calculating the time

REVIEW OF QUESTION 5

GENERAL OVERALL RECOMMENDATIONS

- There were too many tables, graphics or annexures per question (sometimes 3 per question) for learners to work through, which resulted in an 'over-burdening' amount of information. Learners would have taken a lot of time to understand, interpret and extract information before they have even begun to answer the questions. This is especially true for our $2^{\text {nd }}$ language learners. This also made the question paper too long.
- Growth charts, assembly diagrams and strip charts should be far clearer and enlarged. They should be presented as an annexure.
- More scaffolding should be provided for the multi-layered, multi-step questions - to enable all learners to at least make a start with the question and progress from there onwards.
- The longer, more multi-layered and complex questions should not be given towards the end of the paper. Learners 'zone-out' and battle to concentrate and focus.

CONTACT

www.theanswer.co.za

susan@theanswerseries.co.za
(021) 67108370643718715
\oplus
The Answer Series - Study Guides
(O) @theanswerseries

CONTACT

Bronwyn Adonis-Maarman
(Chairperson of AMESA Western Cape)
westerncape@amesa.org.za

[^0]: Adapted from www.pampers.com/en-us/baby/health/article

