PAST PAPERS TOOLKIT

Mathematics

OFFICIAL DBE/IEB EXAMS \& MEMOS

Anne Eadie, Gretel Lampe, Jenny Campbell \& Susan Carletti

CAPS

Grade 12 Mathematics Past Papers Toolkit

OFFICIAL DBE/IEB EXAMS \& MEMOS

This low-priced product, offering both theory and practice, is perfect for 'remote' exam preparation for matrics, particularly during an extremely challenging time, following the loss of teaching and learning countrywide.

This UP-TO-DATE publication is indeed a TOOLKIT, containing:

DBE and IEB Nov Paper 1 \& Paper 2 Exams

- DBE (2014-2020) \& IEB (2017-2020) with comprehensive solutions to all papers.
- TOPIC GUIDES make it possible to select questions on separate topics, as well as challenging questions from all these exams and totally aligned with DBE Diagnostic Reports since 2014.

Supportive, vital documents \& powerful summaries

- curriculum
- cognitive levels
- test \& exam prep reminders
- all examinable proofs
- summaries on quadrilaterals, circle geometry, analytical geometry, concavity
- theorem statements \& acceptable reasons
- formulae
- calculator instructions

How learners can improve their exam techniques:

- write a few of the papers under exam conditions
- get comfortable with having to concentrate for the full 3 hour time period
- learn to work though the paper a few times, answering all the routine questions first, then
- coming back for more challenging questions that take more time, and
- finally, when all else is done, tackling the questions that need more time and attention

Good exam technique makes a huge difference to anyone's ability to produce top quality work under pressure and there is no doubt that The Answer Series Grade 12 Past Papers Toolkit levels the playing fields and ensures that everyone has equal access to success.

GRADE

12
DBE \& IEB

Mathematics PAST PAPERS TOOLKIT

Anne Eadie, Gretel Lampe, Jenny Campbell \& Susan Carletti

Other Gr 12 publications available

- GRADE 12 MATHEMATICS 2-in-1

1) Questions in topics
2) Exam papers
(3) A separate booklet on challenging,

Level 3 \& 4 questions
Full solutions provided throughout

- GRADE 12 MATHEMATICS P \& A

10 additional, challenging
practice exams \& answers

THIS PAST PAPERS TOOLKIT INCLUDES

- DBE \& IEB Exam Papers
- Comprehensive solutions to all papers - compiled by our authors, not from the official memoranda
- Supportive, vital documents \& powerful summaries

CONTENTS: Gr 12 Exams for DBE \& IEB

The Exam

Sure Route to Success in Matric Maths
Important Advice for Matrics
The Curriculum (CAPS): Overview of Topics Useful Reminders

DBE Paper 1 Topic Guide

DBE Paper 2 Topic Guide
DBE November 2014 Paper 1 DBE November 2014 Paper 2

DBE November 2015 Paper 1 DBE November 2015 Paper 2 DBE November 2016 Paper 1 DBE November 2016 Paper 2 DBE November 2017 Paper 1 DBE November 2017 Paper 2 DBE November 2018 Paper 1 DBE November 2018 Paper 2 DBE November 2019 Paper 1 DBE November 2019 Paper 2 DBE November 2020 Paper 1 DBE November 2020 Paper 2

Exam Memo12
3

Exam

Memo

IEB Paper 1 Topic Guide
 39

IEB Paper 2 Topic Guide 40
IEB November 2017 Paper 1 41
IEB November 2017 Paper 2 44 A70
IEB November 2018 Paper 1 A73
IEB November 2018 Paper 2 A76
IEB November 2019 Paper 1 A79
IEB November 2019 Paper 2 A82
IEB November 2020 Paper 1 A85
IEB November 2020 Paper 2 A89

1. Bookwork: Examinable Proofs i
2. Trig Summary vii
3. Quadrilaterals - definitions, areas \& properties viii
4. Concavity \& The Point of Inflection ix5. Analytical Geometry Toolkit6. Grouping of Circle Geometry Theorems7. Euclidean Geometry: Theorem Statements \&Acceptable Reasonsxiv
5. Calculator Instructions xyii
6. DBE/IEB Formula (Information) Sheet xviii

We are grateful to the Department of Basic Education and the IEB for granting their permission for the inclusion of these exam papers.

USEFUL RAMINDERS

A helpful reference for what to study before a test or exam

PAPER 1

Linear \& Quadratic Equations

Solve using . . .

- Factorising
- Substitution method or the k-method
- Quadratic formula: $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Nature of Roots

Nature of Roots

- Use Δ (the discriminant) to classify roots: $x=\frac{-\mathrm{b} \pm \sqrt{\Delta}}{2 \mathrm{a}}$, where $\Delta=\mathrm{b}^{2}-4 \mathrm{ac}$ c
Simultaneous Equations

Linear \& Quadratic Inequalities

- Number lines
- Interval and inequality notation

Exponents \& Surds \& Logs

- Exponent, Surd and Log Laws
- Surd equations must be checked for extraneous answers
- Logs ... Definition: $x=b^{\mathrm{a}} \Leftrightarrow \log _{\mathrm{b}} x=\mathrm{a}$
- Solve log equations \& inequalities using graphs

Patterns \& Sequences

See Sum Formulae

 on p . i$$
\text { Linear Patterns (APs): } T_{n}=a n+b \text { or } T_{n}=a+(n-1) d \quad \& \quad S_{n}=\frac{n}{2}\left(a+T_{n}\right) ;
$$

$$
S_{n}=\frac{n}{2}[2 a+(n-1) d] \quad \text { think }+ \text { and }- \text { for APs }
$$

- constant first difference: $d=T_{n}-T_{n-1} \quad \ldots$ Def: $T_{2}-T_{1}=T_{3}-T_{2}$

Exponential Patterns (GPs): $T_{n}=a r^{n-1} \quad \& \quad S_{n}=\frac{a\left(r^{n}-1\right)}{r-1} ; \quad S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}$;

- Sum to infinity: $S_{\infty}=\frac{a}{1-r}$ for $-1<r<1$
think \mathbf{x} and \div for $\mathbf{G P s}$

Quadratic Patterns: $T_{n}=a n^{2}+b n+c$

- constant second difference

Sigma: $\sum_{k=1}^{n} T_{k}=S_{n} \quad \ldots$ Note: $T_{n}=S_{n}-S_{n-1}$
19. 98

Finance

Simple Interest Growth \& Decay A = P(1 $\pm i n)$

- Application of SI Growth involving hire purchase: Find interest rate, no. of years or principle amount
- Simple Interest Decay = Straight line Depreciation

Compound Interest Growth \& Decay $\quad \mathrm{A}=\mathrm{P}(1 \pm i)^{n}$

- Applications involving inflation, population growth, exchange rates
- Find P, i, or n (using logs)
- The effect of different compounding intervals
- Compound Interest Decay = Depreciation on a Reducing Balance

Effective and Nominal Interest Rates

Convert fluently between nominal and effective interest rates for: monthly, quarterly, half-yearly/semi-annual compounding periods

Time lines
Annuities
Present Value Annuity: $\quad \mathrm{P}_{\mathrm{v}}=\frac{x\left[1-(1+\boldsymbol{i})^{-\mathrm{n}}\right]}{\boldsymbol{i}}$
$\boldsymbol{\&}$
Future Value Annuity: $\quad \mathrm{F}_{\mathrm{v}}=\frac{x\left[(1+\boldsymbol{i})^{\mathrm{n}}-1\right]}{\boldsymbol{i}}, ~$
... where payment commences 1 time period from the present and ends at n .

- Interest must be compounded at the same rate as the payments
- Calculate the value of any of the variables in the above formulae except i
- Keep an eye out for deferred payments, early payments, missed payments
- Interest

- Balance Outstanding

DBE P1: TOPIC CUIDE	2014	2015	2016	2017	2018	2019	2020
> Algebra: Quadratic equations \& theory	1.1.1, 1.1.2, 1.4	1.1.1, 1.1.2, 1.3*	1.1.1, 1.1.2, 1.2.1	1.1.1, 1.1.2	1.1.1, 1.1.2	1.1.1, 1.1.2	1.1.1, 1.1.2
Quadratic inequalities	1.3	1.1.5	1.2.2	1.3.1	1.1.3	1.1.3	1.1.3,
Simultaneous equations	1.2	1.2^{*}	1.3	1.2	1.2	1.2	1.2
Expressions							
Exponents: Expressions					1.3*		
Equations \& inequalities	1.1.3	1.1.3	1.1.4			1.3*	1.3*
Surds: Expressions							
Equations		1.1.4	1.1.3	1.1.3	1.1.4	1.1.4	1.1.4
> Logs (Application):							
P Patters \& Sequences: Quadratic	3.1		3.1*	2.1		2.1	2.2
Arithmetic	2.1, 2.2, 2.4, 2.5	3.1-3.3, 3.4*	2.1-2.3, 2.4*	2.2			2.1
Geometric	3.2	2.1-2.4	3.2*		3.1, 3.2	2.2	11.3*
Σ	2.3			3*	3.3, 3.4*	3.1*	3.1, 3.2*
Mixed / General	3.3				2.1-2.3	3.2	
Finance, growth \& decay: Simple \& compound growth \& decay	7.1	7.1-7.3		6.1		6.1	6.2
Annuities	7.2	7.4*	7.1-7.3, 7.4*	6.2*	7.2	6.2	6.1, 6.3*
Time line					7.1*		
Functions \& Graphs: Straight line and/or parabola		5.1, 6.1.1-6.1.3		$\begin{aligned} & 1.3^{*}, 4.1-4.4, \\ & 4.5^{*}, 4.6,4.7^{*} \end{aligned}$	6.1-6.3, 6.4*, 6.6*		
Hyperbola	4	6.2			5.1-5.3,		4.1
Exponent. \& log function (incl. Inverses)	5	$4.1-4.3,5.2^{*}, 5.3,5.4$	4.1-4.4, 4.5*				
Inverse functions					4.1-4.3, 4.4*	$5.1-5.3,5.4^{*}, 5.5^{*}$	5.1, 5.2, 5.3*, $5.4^{*}, 5.5$
Mixed	6*	5.5*	$\begin{gathered} 5.1,5.2^{\star}, 5.3,5.4^{*}, 5.5^{*} \\ 6.1,6.2,6.3^{\star}, 6.4 \end{gathered}$	$5.1-5.5,5.6^{*}$		4.1 - 4.6, 4.7*	4.2
Differential Calculus: Finding the derivative: $1^{\text {st }}$ principles	8.1	8.1	8.1, 8.2*	7.1	8.1	7.1	7.1
Finding the derivative: using the rules	8.2, 8.3	8.2	8.3	7.2	8.2	7.2, 7.3	7.2, 8.4
(or) Finding the average gradient		9.2					
Tangent: the gradient \& the equation		9.5*	8.4*			7.4*	
Curve sketching \& $f^{\prime \prime}$ \& concavity	8.4, 9.1 - 9.3	5.6*, 6.1.4, 9.1, 9.3*, 9.4*	$\begin{gathered} 5.6^{*}, 9.1 \\ (9.2-9.4)^{*} \end{gathered}$	8*	5.4*, 6.5*, 9.1*, 9.2	9.1, 9.2*, 9.3, 9.4*	8.1, 8.2, 8.3*
Practical application (incl. Max/min)	10*	10*	1.2.3, 10.1, 10.2*, 10.3*	9*	10*	8.1, 8.2*, 8.3	8.5*, 9.1*, 9.2*
Probability: Probability rules		11.1			12.1		
Venn diagrams				10.1, 10.2* 10.3^{*}		11.1*	
Tree diagrams		11.3*			12.2*		11.1*, 11.2
2-way contingency tables	11*		11.1, 11.2*, 11.3				
Fundamental Counting Principle	12*	11.2*	12*	11*	11*	10*, 11.2	10*

DBE NOV 2015 PAPER 1

Clearly show ALL calculations, diagrams, graphs, etc. that you have used in determining your answers.
Answers only will NOT necessarily be awarded full marks.
You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
If necessary, round off answers to TWO decimal places, unless stated otherwise.

- ALGEBRA AND EQUATIONS AND |NEQUALITIES [26]

QUESTION 1

Answers on p. A9
1.1 Solve for x :
1.1.1 $x^{2}-9 x+20=0$
1.1.2 $3 x^{2}+5 x=4$ (correct to TWO decimal places)
1.1.3 $2 x^{\frac{-5}{3}}=64 \quad$... No calculator!
1.1.4 $\sqrt{2-x}=x-2$
1.1.5 $x^{2}+7 x<0$
1.2* Given: $(3 x-y)^{2}+(x-5)^{2}=0$

Solve for x and y
1.3* For which value(s) of k will the equation $x^{2}+x=\mathrm{k}$ have no real roots?
(4) [26]

- PATTERNS AND SEQUENCES [22]

QUESTION 2 ... Geometric Sequence Answers on p. A9

QUESTION 3

Answers on p. A10
Consider the series: $S_{n}=-3+5+13+21+\ldots$ to n terms.
3.1 Determine the general term of the series in the form $T_{k}=b k+c$
3.2 Write S_{n} in sigma notation.
3.3 Show that $S_{n}=4 n^{2}-7 n$.
3.4* Another sequence is defined as:

$$
Q_{1}=-6
$$

$Q_{2}=-6-3$
$Q_{3}=-6-3+5$

$Q_{4}=-6-3+5+13$
$Q_{5}=-6-3+5+13+21$
3.4.1 Write down a numerical expression for Q_{6}.
3.4.2 Calculate the value of Q_{129}.

- FUNCTIONS AND GRAPHS [37]

QUESTION 4

Answers on p. A10
Given: $\mathrm{f}(x)=2^{x+1}-8$
4.1 Write down the equation of the asymptote of \mathbf{f}.
4.2 Sketch the graph of \mathbf{f}. Clearly indicate ALL intercepts with the axes as well as the asymptote.
4.3 The graph of \mathbf{g} is obtained by reflecting the graph of \mathbf{f} in the y-axis. Write down the equation of \mathbf{g}.

Given
$\mathrm{h}(x)=2 x-3$ for $-2 \leq x \leq 4$
The x-intercept
of h is at Q.

5.1 Determine the coordinates of Q.
(3)
5.3 Sketch the graph of \mathbf{h}^{-1}, clearly indicating the y-intercept and the end points.
5.4 For which value(s) of x will $\mathrm{h}(x)=\mathrm{h}^{-1}(x)$?
5.5* $\mathrm{P}(x ; y)$ is the point on the graph of \mathbf{h} that is closest to the origin. Calculate the distance OP.
5.6* Given: $\mathrm{h}(x)=\mathrm{f}^{\prime}(x)$ where \mathbf{f} is a function defined for $-2 \leq x \leq 4$
5.6.1 Explain why f has a local minimum.
5.6.2 Write down the value of the maximum gradient of the tangent to the graph of \mathbf{f}.

QUESTION 6

Answers on p. All
6.1 The graphs of $\mathrm{f}(x)=-2 x^{2}+18$ and $g(x)=a x^{2}+b x+c$ are sketched below.

Points P and Q are the x-intercepts of \mathbf{f}. Points Q and R are the x-intercepts of \mathbf{g}. S is the turning point of \mathbf{g}. T is the y -intercept of both \mathbf{f} and \mathbf{g}.

6.1.1 Write down the coordinates of T .
6.1.2 Determine the coordinates of Q.
6.1.3 Given that $x=4,5$ at S , determine the coordinates of R.
6.1.4 Determine the value(s) of x for which $g^{\prime \prime}(x)>0$.

QUESTION 4

Answers on p. A17
In the diagram below, $\mathrm{Q}(5 ; 2)$ is the centre of a circle that intersects the y-axis at $P(0 ; 6)$ and S. The tangent APB
at P intersects the x-axis at B and makes the angle α with the positive x-axis. R is a point on the circle and $\mathrm{PR} S=\theta$.

- TRIGONOMETRY [42]

QUESTION 5

Answers on p. A17
5.1 Given that $\sin 23^{\circ}=\sqrt{\mathrm{k}}$, determine, in its simplest
form, the value of each of the following in terms of k, WITHOUT using a calculator:
5.1.1 $\sin 203^{\circ}$
5.1.2 $\cos 23^{\circ}$
5.1.3 $\tan \left(-23^{\circ}\right)$
(2)

Need help - go to pp. v \& vi to master

 Compound and Double Angle Formulae.5.2* Simplify the following expression to a single trigonometric function:
$\frac{4 \cos (-x) \cdot \cos \left(90^{\circ}+x\right)}{\sin \left(30^{\circ}-x\right) \cdot \cos x+\cos \left(30^{\circ}-x\right) \cdot \sin x}$
5.3 Determine the general solution of $\cos 2 x-7 \cos x-3=0$.
5.4* Given that $\sin \theta=\frac{1}{3}$, calculate the numerical value of $\sin 3 \theta$, WITHOUT using a calculator.

QUESTION 6

Answers on p. Al8
In the diagram below, the graphs of $\mathrm{f}(x)=\cos x+\mathrm{q}$ and $\mathrm{g}(x)=\sin (x+\mathrm{p})$ are drawn on the same system of axes for $-240^{\circ} \leq x \leq 240^{\circ}$.

The graphs intersect at $\left(0^{\circ} ; \frac{1}{2}\right),\left(-120^{\circ} ;-1\right)$ and $\left(240^{\circ} ;-1\right)$.

6.1 Determine the values of p and q.
6.2 Determine the values of x in the interval $-240^{\circ} \leq x \leq 240^{\circ}$ for which $\mathrm{f}(x)>\mathrm{g}(x)$.
(4)
6.3* Describe a transformation that the graph of \mathbf{g} has to undergo to form the graph of \mathbf{h}, where $\mathrm{h}(x)=-\cos x$.

QUESTION 7*

A corner of a rectangular block of wood is cut off and shown in the diagram below.

The inclined plane, that is, $\triangle A C D$, is an isosceles triangle having $A \hat{D} C=A \hat{C} D=\theta$.

Also $\mathrm{ACB}=\frac{1}{2} \theta, \quad \mathrm{AC}=x+3$ and $\mathrm{CD}=2 x$

7.1 Determine an expression for CÂD in terms of θ.
7.2 Prove that $\cos \theta=\frac{x}{x+3}$
(5) [10]

Your tools

RIGHT ANGLED $\Delta^{\mathbf{s}}$	NON-RIGHT ANGLED $\Delta^{\mathbf{s}}$
(1) Regular trig ratios	(1) Sine rule
(2) Theorem of Pythagoras	(2) Cos rule

Also: Area of a $\Delta=\frac{1}{2}$ bh or $\frac{1}{2} a b \sin C$
See the Paper 2 Topic Guides (on pp. $2 \& 40$)
to select and practice more examples.
Also see p. 23 of the EXTENSION Booklet on
CHALLENGING QUESTIONS accompanying our
Gr 12 Maths 2-in-1 study guide (the booklet also
forms part of the Gr 12 Maths 2-in-1 eBook).

QUESTION 9

9.1 A metal frame is built to help provide some shade to a triangular piece of land $A B C$.

- A, B and C are on the same horizontal plane
- $A C=7$ metres; $C B=8$ metres and $A B=10$ metres.
- AF, BG and CH are vertical metal poles.
- $\mathrm{AF}=\mathrm{BG}=3$ metres and $\mathrm{CH}=2$ metres.
- HF, FG and GH are metal poles that complete the metal frame.

Calculate the area of $\Delta \mathrm{FGH}$. (The area of canvas required.) (7)
9.2 In the diagram below, C and A are points that lie on the circle.

- C and B lie on the x-axis.
- $A B$ is a tangent at point $A(5 ; 3)$
- The equation of the circle is $x^{2}+y^{2}-6 x-4 y+8=0$.

9.2.1 Find the coordinates of C .
(2)
9.2.2 Calculate the length of $C B$.
(8)

QUESTION 10

In the diagram below, A; B and F lie on the circle

- The equation of line EA is $3 y-2 x=8$.
- The gradient of line AF is -1 .

10.1 Calculate the size of EÂF
10.2 If $\mathrm{EA}=\sqrt{52}$ and $\mathrm{FB}=\sqrt{40}$ then calculate the length of $C B$ if the centre of the circle lies on $C B$ and $C B \perp A F$.

QUESTION 11

Answers on p. A85
In the diagram below, C, D and M are points on the circle.

- $M C \hat{D}=x$.
- KD is a tangent to the circle at D.
- E is a point on DK
- EM is another tangent to the circle at M
- $\mathrm{KME}=x+45^{\circ}$ and EKM $=2 x-40^{\circ}$

Determine the value of x.

QUESTION 12

The diagram below is an aerial view of four wind turbines placed at A, D, E and B

- Line $A B$ has equation $5 x+12 y=60$.
- A lies on the y-axis.
- B lies on the x-axis
- E is the midpoint of DB
- C lies on $A B$ and represents the control station.
- The area of $\triangle \mathrm{ADC}: \Delta \mathrm{ECD}$ is $8: 9$.

12.1 Calculate the distance of $A B$.
(2)
12.2 Find the coordinates of C

TOTAL SECTION B: 75
TOTAL: 150

9.1 Sketches of f, f^{\prime} and $f^{\prime \prime}$

At the stationery points of f :

$$
\begin{aligned}
f^{\prime}(x)=0 \quad & \Rightarrow 3 x^{2}+8 x-3=0 \\
& \therefore(3 x-1)(x+3)=0 \\
& \therefore x=\frac{1}{3} \quad \text { or } \quad-3<
\end{aligned}
$$

9.2 At the point of inflection

$$
\begin{aligned}
\mathrm{f}^{\prime \prime}(x) & =0 \\
6 x+8 & =0 \\
\therefore 6 x & =-8 \\
\therefore x & =-\frac{4}{3}
\end{aligned}
$$

f is concave down for $x<-\frac{4}{3}<$

See the

 sketch of f and $f^{\prime \prime}$.9.3 f strictly increasing
$\mathrm{f}^{\prime}(x)>0$

$$
x<-3 \text { or } x>\frac{1}{3}
$$

$$
\begin{gathered}
\text { See the sketches } \\
\text { of } f \text { and } f^{\prime} .
\end{gathered}
$$

OR: $\quad 3 x^{2}+8 x-3<0$

$$
\begin{array}{lcc}
\mathrm{f}^{\prime}(x): & +\quad-\quad-\quad+ \\
(x): & \stackrel{-}{3} & + \\
& \therefore x<-3 & \text { or } \\
& x>\frac{1}{3}<
\end{array}
$$

9.4 $f(x)=a x^{3}+b x^{2}+c x+d$
$\mathrm{f}(0)=-18 \Rightarrow \mathrm{~d}=-18$
\& $f^{\prime}(x)=3 a x^{2}+2 b x+c$
But, $\mathrm{f}^{\prime}(x)=3 x^{2}+8 x-3 \quad \ldots$ given

$$
\begin{array}{rlrl}
\therefore 3 a & =3 \\
\therefore a & =1 \quad 2 b & =8 \\
\therefore b & =4 \\
\therefore f(x) & =x^{3}+4 x^{2}-\mathbf{3 x}-\mathbf{1 8}
\end{array}
$$

10. Read the information very carefully, so that you know that: $\mathbf{M}(\mathbf{t})=$ the number of molecules after time t hours
\& $\mathbf{t}=$ the number of hours after the drug has been taken

OR: x is halfway between $\frac{1}{3} \&-3$

$$
\begin{aligned}
x & =\frac{\frac{1}{3}+(-3)}{2} \\
& =\frac{-2 \frac{2}{3}}{2} \\
& =-1 \frac{1}{3}<
\end{aligned}
$$

$$
\text { OR: } \begin{aligned}
\mathrm{f}^{\prime \prime}(x) & <0 \\
\therefore 6 x+8 & <0 \\
\therefore 6 x & <-8 \\
\therefore \boldsymbol{x} & <-\frac{4}{3}
\end{aligned}
$$

$M(t)=-t^{3}+3 t^{2}+72 t, \quad 0<t<10$
10.1 After $\mathbf{3}$ hours $(t=3)$, the number of molecules

$$
\begin{aligned}
\mathbf{M}(3) & =-3^{3}+3(3)^{2}+72(3) \\
& =-27+27+216 \\
& =\mathbf{2 1 6} \text { molecules }<
\end{aligned}
$$

10.2 The 'rate of change' of $M(t)$ vs t at time $t=2$ is the derivative :
as opposed to the 'average rate of change'
which would be $\frac{M(2)-M(0)}{2-0}$ during the first 2 hours

$$
M^{\prime}(t)=-3 t^{2}+6 t+72
$$

$$
\therefore \quad M^{\prime}(2)=-3(2)^{2}+6(2)+72
$$

$$
=-12+12+72
$$

= 72 molecules per hour <
10.3 The rate at which the number of molecules, $M(t)$ is changing is: $M^{\prime}(t)=-3 t^{2}+6 t+72$
. a quadratic expression
\& it will be a maximum at the turning point, i.e. when

$$
\begin{aligned}
& t=\frac{-b}{2 a} \quad \text { or } \quad M^{\prime \prime}(t)=0 \\
& =\frac{-6}{2(-3)} \quad \therefore-6 t+6 t=0 \\
& =1 \quad \therefore-6 t=-6 t \\
& \therefore \mathrm{t}=1 \\
& \text { After } 1 \text { hour } \\
& \text { OR: } \\
& \mathrm{t}=\mathrm{the} \text { average } \\
& \text { of }-4 \& 6 \\
& =\frac{-4+6}{2} \\
& =1
\end{aligned}
$$

- PROBABILITY [13]

11.

11.	WATCHED TV DURING	DID NOT WATCH TV DURING EXAMINATIONS	TOTALS
Males	80	$\mathrm{a}=20$	100
Females	48	12	60
Total	$\mathrm{b}=128$	32	160

11.1 $a=100-80=20<$
\& $\mathbf{b}=80+48$ or $160-32=128<$
5.4.2 $\mathrm{f}(x)=\sin \left(x+10^{\circ}\right) \quad \ldots$ see above

Minimum value (of -1) when

$$
x+10^{\circ}=270^{\circ}+\mathrm{n}\left(360^{\circ}\right)
$$

$-1 \leq \sin \theta \leq 1$ for all θ;

$$
x=260^{\circ}+\mathrm{n}\left(360^{\circ}\right)
$$

\therefore In the given interval: $\boldsymbol{x}=\mathbf{2 6 0}{ }^{\circ}$

```
6.1 The range of f: -2 \leqy\leq0<
6.2 900}<\boldsymbol{x}<\mathbf{270
6.3 PQ = g(x)-f(x)
    = cos 2x- (sin}x-1
    = 1-2 sin}\mp@subsup{}{2}{x}-\operatorname{sin}x+
    = -2 (\mp@subsup{\operatorname{sin}}{}{2}x-\operatorname{sin}x+2
```

Maximum PQ when $\sin x=-\frac{-1}{2(-2)}=-\frac{1}{4}$
$\therefore x=180^{\circ}+14,48^{\circ}$
(III) Reference $\angle=14,48^{\circ}$
$=194,48^{\circ}<$
or $\begin{aligned} x & =360^{\circ}-14,48^{\circ} \\ & =345,52^{\circ}<\end{aligned}$
(IV)
PQ must lie between $A \& B$, so one cannot
include $x=-14,48^{\circ}$
7.1 In right-angled $\triangle A D K: \quad \frac{A K}{x}=\sin 60^{\circ}$

$$
\begin{aligned}
\mathrm{AK} & =x \sin 60^{\circ} \\
& =\frac{\sqrt{3} x}{2}<
\end{aligned}
$$

Kヘ̂干 $=120^{\circ}<\quad D E \|$ CF in rhombus; co-int. \angle^{s} are supplementary
7.3 The area of $\triangle A K F=\frac{1}{2} A K . K F \sin y$ $\mathrm{AK}=\frac{\sqrt{3} x}{2}$ units see 7.1

$$
\text { (1) } \begin{aligned}
& \text { Area of } a \Delta \\
& =\frac{1}{2} a b \sin C
\end{aligned}
$$

\& $\ln \triangle \mathrm{KFC}: \mathrm{KC}=\frac{1}{2} \mathrm{DC}=\frac{1}{2} x$ \& $\mathrm{CF}=x$

The Area of $\triangle A K F=\frac{1}{2}\left(\frac{\sqrt{3} x}{2}\right)\left(\frac{\sqrt{7} x}{2}\right) \sin y$

$$
=\frac{\sqrt{21} x^{2}}{8} \sin y \text { square units }<
$$

- EUCLIDEAN GEOMETRY \&

 MEASUREMENT [48]8.1

8.1.1 $\hat{R}=180^{\circ}-100^{\circ}$
$Q W \| R K$ in $\|^{m}$;
$=80^{\circ}<$
co-int. \angle^{s} supplementary
8.1.2 $\hat{P}=180^{\circ}-80^{\circ}$
opposite \angle^{s} of c.q. PQRS are supplementary
8.1.3 PQ̂W $+\hat{\mathrm{Q}}_{1}=136^{\circ} \quad \ldots$ exterior \angle of c.q. PQRS $=$ int. opposite \angle
PQQW $=36^{\circ}<$
8.1.4 $\quad \hat{\mathrm{U}}_{2}=\hat{\mathrm{S}}_{2} \quad \ldots$ alternate $\angle^{s} ; Q W \| R S$
$=136^{\circ}<$

$$
\text { or: } \begin{aligned}
\hat{U}_{2} & =P \hat{Q} W+\hat{P} \\
& =36^{\circ}+100^{\circ} \\
& =136^{\circ}<
\end{aligned}
$$

8.2.1 $\ln \Delta^{\mathrm{s}} \mathrm{FTE}$ and CTD:

$$
\begin{aligned}
& \frac{\mathrm{FT}}{\mathrm{CT}}=\frac{\mathrm{TE}}{\mathrm{TD}}=\frac{\mathrm{FE}}{\mathrm{CD}}=\frac{1}{2} \\
& \ldots \frac{5}{10}=\frac{7}{14}=\frac{9}{18}
\end{aligned}
$$

$\therefore \Delta$ FTE ||| $\Delta \mathrm{CTD}$
... proportional sides
. TFFE = TĈD
$\ldots \Delta^{s}$ are equiangular

i.e. $\mathbf{E F} \mathbf{D}=\mathrm{E} \hat{C} \mathbf{D}<$
8.2.2 Quadrilateral CDEF is a cyclic quadrilateral

ED subtends equal \angle^{s} at F and C. . . proved in 8.2.1 (i.e. converse of same segment thm.)

D $\hat{F} \mathbf{C}=\mathrm{DÊ} \ll \ldots \angle^{s}$ in the same segment
9. $\quad \hat{\mathrm{O}}_{2}=360^{\circ}-x \quad \ldots \angle^{s}$ about point O
$\therefore \hat{M}=180^{\circ}-\frac{1}{2} x \quad \ldots \angle$ at centre $=2 \times \angle$ at circumf .

$\hat{P}_{1}=\hat{T}_{2}$
\angle^{s} opp equal sides
$\hat{P}_{1}=\frac{1}{2}\left[180^{\circ}-\left(180^{\circ}-\frac{1}{2} x\right)\right] \ldots \angle \operatorname{sum}$ of Δ
$=\frac{1}{2}\left(\frac{1}{2} x\right)$
$=\frac{1}{4} x$
STM $=\hat{P}_{1} \quad \ldots$ tan chord theorem

$$
=\frac{1}{4} x<
$$

The Proportion Theorem

(6)

A line parallel to one side of a triangle divides the other two sides proportionally.

$$
\text { i.e. } D E \| B C \Rightarrow \frac{A D}{D B}=\frac{A E}{E C}
$$

Given: $\triangle A B C$ with $D E \| B C$,
$D \& E$ on $A B \& A C$ respectively.

To prove: $\frac{A D}{D B}=\frac{A E}{E C}$

Construction: Join DC \& BE

The Similar $\Delta^{\mathbf{s}}$ Theorem

(7) \qquad

Given: $\quad \triangle \mathrm{ABC} \& \triangle \mathrm{DEF}$ with $\hat{A}=\hat{D} \quad \hat{B}=\hat{E} \quad \& \hat{C}=\hat{F}$
To prove: $\quad \frac{A B}{D E}=\frac{A C}{D F}=\frac{B C}{E F}$
Construction: Mark $P \& Q$ on $D E \& D F$ such that $D P=A B \& D Q=A C$
Proof: \quad In $\Delta^{\text {s }} \mathrm{DPQ} \& \mathrm{ABC}$

	(1) $\mathrm{DP}=\mathrm{AB} \ldots$ construction (2) $\mathrm{DQ}=\mathrm{AC} \ldots$ construction (3) $\hat{D}=\hat{A} \quad \ldots$ given $\begin{aligned} & \therefore \quad \Delta \mathrm{DPQ} \equiv \Delta \mathrm{ABC} \quad \ldots S \angle S \\ & \therefore \hat{P}_{1}=\hat{\mathrm{B}} \\ & \quad=\hat{E} \quad \ldots \text { given } \end{aligned}$		
The focal point	$\therefore \mathrm{PQ} \\| \mathrm{EF} \ldots$ corresponding \angle^{s} equal $\begin{gathered} \therefore \frac{\mathrm{DP}}{\mathrm{DE}}=\frac{\mathrm{DQ}}{\mathrm{DF}} \quad \ldots \text { proportion theorem; } \\ P Q \\| E F \end{gathered}$		
	$\begin{aligned} \text { But } \quad D P & =A B \quad \text { and } \\ D Q & =A C \quad \ldots \text { construction } \\ \therefore \frac{A B}{D E} & =\frac{A C}{D F} \end{aligned}$		

Similarly, by marking S and T on DE and EF such that
$S E=A B$ and $E T=B C$, it can be proved that: $\frac{A B}{D E}=\frac{B C}{E F}$

$$
\frac{A B}{D E}=\frac{A C}{D F}=\frac{B C}{E F}<
$$

stage 1:
congruency
stage 2: corresponding $\angle^{\text {s }}$
stage 3: parallel lines
stage 4: proportions

Compound Angle Formulae

Double Angle Formulae

Sign changes cosine of A and B first, then sine of $A \& B$
5. $\sin 2 A=2 \sin A \cos A$
6. $\cos 2 A=\cos ^{2} A-\sin ^{2} A$

This formula will be derived from the formula no. 3
or $\cos 2 A=1-2 \sin ^{2} A$
or $\cos 2 A=2 \cos ^{2} A-1$

Sign stays the same sine \& cosine of A and B mixed
3. $\cos (A+B)=\cos A \cos B-\sin A \sin B$
4. $\cos (A-B)=\cos A \cos B+\sin A \sin B$

We will prove formula no. 4 (see alongside) and then derive the other 3 from it.

1. $\sin (A+B)=\sin A \cos B+\cos A \sin B$
2. $\sin (A-B)=\sin A \cos B-\cos A \sin B$

Proof of the Formula:

$\cos (A-B)=\cos A \cos B+\sin A \sin B$

First, an important concept!

NOTE: If OP = 1 unit !

 then: $\frac{x}{1}=\cos \theta$ and $\frac{y}{1}=\sin \theta$i.e. $x=\cos \theta$ and $y=\sin \theta$ i.e. \mathbf{P} is the point $(\boldsymbol{\operatorname { c o s }} \theta ; \sin \theta)$

In the sketch alongside, $\hat{\mathbf{A}}$ and $\hat{\mathbf{B}}$ have been placed in standard position.

$\mathbf{R} \hat{\mathbf{O}} \mathbf{Q}=\hat{\mathbf{A}} \mathbf{-} \hat{\mathbf{B}}$.

The coordinates of the points \mathbf{R} and \mathbf{Q}, both 1 unit from the origin, are:
$\mathbf{R}(\boldsymbol{\operatorname { c o s } A ;} \boldsymbol{\operatorname { s i n }} \mathbf{A}) \& \quad \mathbf{Q}(\boldsymbol{\operatorname { c o s } B ;} \boldsymbol{\operatorname { s i n }} \mathbf{B})$ See NOTE above

Determine 2 expressions for RQ^{2}

$$
\begin{aligned}
\mathbf{R Q}^{2} & =1^{2}+1^{2}-2(1)(1) \cos (\mathrm{A}-\mathrm{B}) \quad \ldots \text { COSINE RULE } \\
& =2-2 \cos (\mathrm{~A}-\mathrm{B}) \quad \ldots \text { (1) } \\
\& \quad \mathbf{R Q}^{\mathbf{2}} & =(\cos \mathrm{A}-\cos \mathrm{B})^{2}+(\sin \mathrm{A}-\sin \mathrm{B})^{2} \ldots \text { DISTANCE FORMULA } \\
& =\cos ^{2} \mathrm{~A}-2 \cos \mathrm{~A} \cos \mathrm{~B}+\cos ^{2} \mathrm{~B}+\sin ^{2} \mathrm{~A}-2 \sin \mathrm{~A} \sin \mathrm{~B}+\sin ^{2} \mathrm{~B} \\
& =2-2 \cos \mathrm{~A} \cos \mathrm{~B}-2 \sin \mathrm{~A} \sin \mathrm{~B}<\ldots \text { (2) } \ldots \sin ^{2} \theta+\cos ^{2} \theta=1
\end{aligned}
$$

- Equate the two expressions for RQ^{2} above:
(1) = 2 $\quad \therefore 2-2 \cos (A-B)=2-2 \cos A \cos B-2 \sin A \sin B$ - Subtract 2: $\quad \therefore-2 \cos (A-B)=-2 \cos A \cos B-2 \sin A \sin B$

Divide by -2 $\left(\right.$ or \times by $\left.-\frac{1}{2}\right): \quad \therefore \cos (\mathbf{A}-\mathbf{B})=\boldsymbol{\operatorname { c o s }} \mathbf{A} \boldsymbol{\operatorname { c o s }} \mathbf{B}+\boldsymbol{\operatorname { s i n }} \mathbf{A} \sin \mathbf{B}<$

QUADRILATERALS - definitions, areas \& properties

All you need to know ${ }^{\text {n }}$,
'Any' Quadrilateral

Sum of the \angle^{s} of any quadrilateral $=360^{\circ}$
$\left(\begin{array}{l}\text { Sum of the interior angles } \\ =(a+b+c)+(d+e+f) \\ =2 \times 180^{\circ} \quad \cdots\left(2 \Delta^{\mathrm{s}}\right) \\ =360^{\circ}\end{array}\right)$

The arrows indicate various 'pathways from 'any quadrilateral to the square (the 'ultimate quadrilateral'). These pathways, which combine logic and fact, are essential to use when proving specific types of quadrilaterals.

See how the properties accumulate as we move from left to right, i.e. the first quad has no special properties and each successive quadrilateral has all preceding properties.

A Trapezium

DEFINITION:
Quadrilateral with 1 pair of opposite sides II

$$
\begin{aligned}
\text { Area } & =\Delta 1+\Delta 2 \\
& =\frac{1}{2} \mathrm{ah}+\frac{1}{2} \mathrm{bh} \\
& \left.=\frac{\mathbf{1}}{\mathbf{2}} \mathbf{(a + b}\right) \cdot \mathbf{h}
\end{aligned}
$$

'Half the sum of the || sides x the distance between them.'

THE DIAGONALS

- cut perpendicularly

A Parallelogram

DEFINITION:
Quadrilateral with 2 pairs opposite sides II

Area $=$ base \times height$\begin{aligned} & \\|^{\mathrm{m}} \mathrm{ABCD}=\mathrm{ABCQ}+\triangle \mathrm{QCD} \\ & \text { rect. } \mathrm{PBCQ} \end{aligned}=\mathrm{ABCQ}+\triangle \mathrm{PBA}, ~ \begin{aligned} & \text { where } \triangle \mathrm{QCD} \equiv \Delta \mathrm{PBA} \quad \ldots R H S \\ & \begin{aligned} \therefore \\|^{\mathrm{m}} \mathrm{ABCD} & =\text { rect. } \mathrm{PBCQ} \text { (in area) } \\ & =\mathrm{BC} \times \mathrm{QC} \end{aligned} \end{aligned}$	

Properties:

2 pairs opposite sides equal
2 pairs opposite angles equal \& DIAGONALS BISECT ONE ANOTHER

- one diagonal bisects the other diagonal, the opposite angles and the area of the kite

The Square

the 'ultimate' quadrilateral!

Area $=\mathbf{s}^{\mathbf{2}}$

Properties:
It's all been said 'before'!
Since a square is a rectangle, a rhombus, a parallelogram, a kite, . . . ALL the properties of these quadrilaterals apply.

Quadrilaterals play a prominent role in both Euclidean \& Analytical Geometry right through to Grade 12!

ANSWER SERIES Your Key to Exam Success

CONCAVITY \& THE POINT OF INFLECTION

The Concavity of cubic graphs: Concave up or Concave down $\%$, changes at the point of inflection: As x increases (i.e. from left to right) ...

GROUPING OF CIRCLE GEOMETRY THEOREMS

\& The grey arrows indicate how various theorems are used to prove subsequent ones _-

$$
\text { IV } \begin{gathered}
\text { The } \\
\text { 'Tangent' } \\
\text { group }
\end{gathered}
$$

There are ' 2 ways to prove that a line is a tangent to $a \odot^{\prime}$.

