Mathematics

TEST \& EXAM PREPARATION

Anne Eadie \& Gretel Lampe

2-in-1

Grade 12 Mathematics 2-in-1 CAPS

TEST \& EXAM PREPARATION

The Answer Series Grade 12 Maths 2-in-1 study guide is a best seller. It presents a unique method of mastering the entire Matric maths course by guiding you up a step-by-step ladder of attainable questions and answers, allowing for constant feedback and growth.

This study guide has TWO distinct sections:

- TOPIC-BASED graded questions and solutions - to develop a step-by-step, thorough understanding of theory, techniques and concepts in every topic
- 14 EXAM PAPERS with detailed solutions, compiled from past National and IEB exams

PLUS, a NEW EXTENSION section, consisting of challenging questions and memos for Paper 1 and Paper 2. These are higher-order questions, identified in reports over recent years, which require and promote deep mathematical thinking.

Key features:

- Critical prior learning (Grade 10 \& 11) included
- Detailed solutions provided for ALL questions
- Step-by-step, methodical conceptual development and guidance on reasoning and strategy
- Useful study notes and advice boxes
- Annexures, vital context pieces for Calculus, Geometry, Trigonometry, etc.
- Extensive coverage of all cognitive levels
- Applicable for both CAPS and IEB candidates

This bestseller provides excellent preparation for CAPS and IEB matriculants throughout the year and has seen many learners increasing their critical thinking skills and succeeding beyond their expectations in this key subject.

Other Gr 12 publications available

- GRADE 12 MATHEMATICS DBE \& IEB
PAST PAPERS TOOLKIT
- papers
- memos
- valuable summaries
ideal for exam preparation
- GRADE 12 MATHEMATICS P \& A

10 additional, challenging
practice exams \& answers
THE
ANSWER
SERIES Your Key to Exam Success

Mathematics

Anne Eadie \& Gretel Lampe

THIS STUDY GUIDE INCLUDES
1 Questions in Topics
2 Examination Papers

Detailed solutions are provided for both sections

PLUS Level 3 \& 4 / Challenging Exam Questions with Solutions (in separate booklet)

CONTENTS

ANNEXURES AT THE FRONT OF THE BOOK

- The Exam
- Sure route to success in Matric Maths
- The Curriculum (CAPS): Overview of Topics

SECTION 1
 Topic Questions \& Full Solutions

Paper

Algebra \& Numbers; Exponents \& SurdsPatterns \& SequencesFunctions \& Inverse functions \qquadLogs \& Log functions
5 Finance, Growth \& Decay 15 $2 \quad 19$ 225 Trigonometry Part 2: 2D \& 3D problems 127108Polynomials ($3^{\text {rd }}$ degree)
\qquad129110Differential Calculus

233 120
Euclidean Geometry: \odot^{s}, Proportion \& Similarity
2 36 126
(11) Statistics \& Regression: (Univariate \& Bivariate data)Probability \qquad

SECTION 2: Exam Papers \& Memos

```
TOPIC GUIDES: Paper 1 \& Paper 2 .................... 147 \& 148
```


ANNEXURES AT THE BACK OF THE BOOK

- Bookwork: Examinable Proofsi
- Trig Summary vi
- Quadrilaterals Summary vii
- Grouping of Circle Geometry Theorems viii
- Converse Theorems in Circle Geometry ix
- Euclidean Geometry: Statements and Acceptable Reasons x
- Analytical Geometry Toolkit xiii
- Concavity \& The Point of Inflection xv
- Calculator Instructions xvii
- DBE/IEB Formulae/Information Sheet xviii

EXTENSION: (in separate booklet)

Level 3 \& 4 Challenging

 Exam Questions \& Solutions

3
 FUNCTIONS \& INVERSE FUNCTIONS

EXERCISE 3.1

Characteristics of Graphs \& Functions

The focus in this section is mainly on the parabola and the straight line and, further on, on their inverses.
See Topic 4 for exponential and log functions and their inverses. See the Topic Guide on p. 147 \& 148 for extensive revision of the hyperbola (no inverse required).

Identifying different types of graphs is very important!

1. On a separate set of axes, for each, draw graphs of:
$1.1 y=4-x^{2}$
$1.2 y=\frac{1}{x-4}$
$1.4 \mathrm{y}=-\frac{4}{x}$
$1.5 \mathrm{y}=\frac{x}{4}$
$1.3 y=4-x$
$1.6 \mathrm{y}=4^{x}$
$(6 \times 3=18)$
2.1 Six graphs named $(\mathrm{a}) \rightarrow$ (f) are sketched below. They are followed by 10 equations. Match the graphs with the equations. Write down $(\mathrm{a}) \rightarrow(\mathrm{f})$ and alongside these, the number selected from (1) \rightarrow (10) that is the equation of the graph.
(a)

(b)

(c)

(d)

(e)

(f)

List of possible equations

(1) $x y=2$
(2) $x y=-2$
(3) $y=-2$
(4) $x=-2$
(5) $y=x^{2}$
(6) $x=y^{2}$
(7) $y=2 x$
(8) $\mathrm{y}=\frac{x}{2}$
(9) $y=2^{x+1}$
(10) $y=2^{x-1}$
(10)
2.2 Write down (a) \rightarrow (f) and say whether the graph represents a one-to-one, a many-to-one or a one-to-many relationship between the values of x (the domain) and the values of y (the range).
2.3 Which of the graphs $(\mathrm{a}) \rightarrow(\mathrm{f})$ are not functions? Why not?

Hint: If a vertical line cuts a graph more than once, it is not a function.
If all vertical lines will cut a graph once (only) then the graph is a function.
2.4 Write down the domain and range of graphs $(\mathrm{a}) \rightarrow(\mathrm{f})$.
2.5 Write down the equations of the asymptotes in (c) and (d). (3)
3.1 Draw sketches to show the reflections of point $\mathrm{P}(5 ; 2)$
(a) in the y-axis
(b) in the x-axis
(c) in the line $y=x$
3.2 Describe the change in the coordinates in each case.
3.3 Note the reflections of the graphs in the line $\mathrm{y}=x$ in the following cases:

(a) Write down the coordinates of the points A to F which are reflections of the given points in the line $\mathrm{y}=x$.
(b) Determine the equations of the reflected graphs in (i), (ii) and (iii) by inspection.
4.1 Draw the reflections of the following graphs in the line $\mathrm{y}=x$.
(6)
(a) $y=x^{2}$
(b) $\mathbf{y}=\mathbf{x}^{\mathbf{2}} ; \mathbf{x} \geq \mathbf{0}$
(c) $\mathbf{y}=\mathbf{x}^{\mathbf{2}} ; \mathbf{x} \leq \mathbf{0}$

4.2

Are the reflections drawn in 4.1 functions?
Determine the equations of the reflections drawn in 4.1.

Copyright © The Answer Series: Photocopying of this material is illegal
5.1 Given any function, $\mathrm{y}=\mathbf{f}(x)$, line, hyperbola, parabola or exponential, describe the transformation required for the following images of \mathbf{f} to be obtained:
A $\mathrm{y}=\mathbf{f}(x)+1$
B $\mathrm{y}=\mathbf{f}(x)-2$
C $\mathrm{y}=\mathbf{f}(x+1)$
D $\mathrm{y}=\mathbf{f}(x-2) \quad \mathrm{E} \quad \mathrm{y}=\mathbf{f}(-x) \quad \mathrm{F} \quad \mathrm{y}=-\mathbf{f}(x)$
5.2 Match the black graph in each of these sketches to the equations A, B, C, \ldots in 5.1. (The grey graph is the original graph \mathbf{f} in each case.)
(6)
(a)

(b)

(e)

(f)

6.1 Four graphs (a) \rightarrow (d) are sketched below. Are any of these graphs functions? Give reasons.
(2)
(a) $4 y$ (b)

(b)
(c)

(d)

6.2 Match graphs (a) \rightarrow (d) with the equations (1) \rightarrow (6) below. Write down (a) \rightarrow (d) and alongside these the number selected from (1) to (6) that is the equation of the graph.
(1) $\mathrm{y}=x^{2}$
(2) $y=x^{2} ; x \leq 0$
(3) $y=-x^{2}$
(4) $\mathrm{y}=-x^{2} ; x \geq 0$
(5) $x=-y^{2}$
(6) $y=\sqrt{x} ; x \geq 0$
6.3 Draw the graph defined by $\mathrm{y}= \pm \sqrt{x}$.
6. In the accompanying figure,
$P(2 ; y)$ is a point in the first quadrant and $O P=\sqrt{13} . \quad X \hat{O} P=\theta$.

6.1 Calculate the value of y.
6.2 Write down the numerical value of $\cos ^{2} \theta$.
6.3 Calculate the value of: $13 \sin ^{2}\left(180^{\circ}+\theta\right)-\tan \theta$.
7. In the diagram alongside,

PÔM $=90^{\circ}, X O \hat{M}=\theta, M(6 ; a)$,
$\mathrm{P}(\mathrm{b} ; 4)$ and $\sqrt{5} \cos \theta-2=0$.
Determine, without the use of a

7.1 a
7.2 b
(4)(3)

Bookwork

8. In the sketch alongside, prove that:
$8.1 \frac{\sin \theta}{\cos \theta}=\tan \theta$
$8.2 \sin ^{2} \theta+\cos ^{2} \theta=1$
$8.3 \sin \left(90^{\circ}-\theta\right)=\cos \theta$

9. In the accompanying figure, $\mathrm{P}(x ; y)$ is a point on the circle with radius r, centre $(0 ; 0)$ and XÔP $=\theta$.
9.1 Prove that:
(a) $\tan \theta=\frac{\sin \theta}{\cos \theta}$
(b) $\sin ^{2} \theta+\cos ^{2} \theta=1$

9.2 Find the value of θ if $x=-\sqrt{3}$ and $\mathrm{y}=1$.

Given Ratios, calculate.

Note: 'without a calculator' means 'with a sketch'
10. If $5 \sin x=3$ and $x+y=90^{\circ}$, calculate without a calculator the value of:
$10.1 \cos y$
$10.2 \tan x+\tan y$
(3)(3)
11. If $5 \tan \theta=12$ and $\theta \in\left[90^{\circ} ; 360^{\circ}\right]$, determine, without using a calculator, but using a suitable sketch, the value of $\sin \theta+\cos \theta$.
12. If $\tan A=-\frac{5}{12}$ and $180^{\circ} \leq A \leq 360^{\circ}$, draw a sketch and calculate (without determining the value of A) the value of: $13 \sin ^{2} \mathrm{~A}$
13. $\sin A=\frac{3}{5}$ and $90^{\circ}<A<270^{\circ}$. Determine, by means of a sketch, the value of: $\frac{\cos A+\sin A}{1-\frac{1}{3} \tan A}$
14. $\tan \alpha=-\frac{3}{4} ; \alpha \in\left(0^{\circ} ; 180^{\circ}\right)$ and $13 \cos \beta-12=0 ; \beta \in\left(180^{\circ} ; 360^{\circ}\right)$ Calculate the value of $\sin \alpha \sin \beta$, without using a calculator.
15. If $\sin x=-\frac{5}{13}$ and $90^{\circ}<x<270^{\circ}$, calculate $\tan ^{2} x \cdot \cos ^{2} x$ without using a calculator.
16. If $\cos x=\mathrm{t}$ and \hat{x} is acute, express
$16.1 \sin x$, and
$16.2 \tan ^{2} x$ in terms of t
(1)(2)
17. If $\tan 27^{\circ}=p$, express each of the following in terms of p :

$$
\begin{array}{lll}
17.1 \sin 27^{\circ} & 17.2 \cos 27^{\circ} & 17.3 \sin 63^{\circ} \\
17.4 \tan 153^{\circ} & 17.5 \tan \left(-27^{\circ}\right) & 17.6 \cos ^{2} 387^{\circ}
\end{array}
$$

$(6 \times 2=12)$

EXERCISE 6.2

Identities

Special $\angle^{\mathrm{s}} ; \mathbf{1 8 0} / 360^{\circ} \& \mathbf{9 0}^{\circ}$ rules

Special angles

Simplify WITHOUT using a calculator
$1.1 \frac{\cos ^{2} 45^{\circ}}{\sin 30^{\circ}} \cdot \frac{\cos 0^{\circ}}{\tan 60^{\circ}}$
1.2
$\frac{\cos 330^{\circ} \cdot \tan 150^{\circ}}{\tan 315^{\circ}}$
(5)(4)
$1.3 \frac{\cos 240^{\circ} \cdot \sin 330^{\circ} \cdot \tan 120^{\circ}}{\sin 150^{\circ} \cdot \tan 210^{\circ} \cdot \cos 120^{\circ}}$
$1.4 \frac{\cos 300^{\circ} \cdot \tan ^{2} 330^{\circ}}{\sin ^{2} 315^{\circ}}$
$2.1 \frac{1}{\sqrt{3}} \sin ^{2} 45^{\circ} \cdot \sin \left(-300^{\circ}\right)-\frac{1}{2} \tan \left(-45^{\circ}\right) \cdot \cos ^{2} 585^{\circ}-\sin \left(-30^{\circ}\right)$
) (9)
$2.2 \frac{\tan 135^{\circ} \cdot \sin 230^{\circ} \cdot \tan \left(-60^{\circ}\right)}{\cos 140^{\circ} \cdot \tan 300^{\circ} \cdot \sin 150^{\circ}}$

3. $\frac{\tan \left(-330^{\circ}\right) \cdot \sin 480^{\circ} \cdot \sin 260^{\circ}}{\cos 225^{\circ} \cdot \sin 315^{\circ} \cdot \cos 350^{\circ}}$
4. Determine, without the use of a calculator the value of:
$4.1 \frac{\sin 137^{\circ}}{\cos 133^{\circ}}$
$4.2 \frac{\cos 10^{\circ} \cdot \cos 120^{\circ}}{\sin 80^{\circ} \cdot \sin 150^{\circ}}$
(4)(4)

$180 \% 360^{\circ}$ Rule (no ratio changes!)

. Basic Gr 9 transformations (CAPS) are used here to develop identities
5.1 (a) In the figure alongside, the coordinates of point A are
(b) Determine the values of $\sin \theta, \cos \theta$ and $\tan \theta$.
5.2 (a) A^{\prime} is a reflection of point A in the ... and the coordinates of point A^{\prime} are . .
(b) Write XÔA' in terms of θ
(c) Determine, first numerically, and then in terms of θ :
$\boldsymbol{\operatorname { s i n }}\left(180^{\circ}-\theta\right)=\left(\frac{y}{r}=\right) \ldots=$

$\boldsymbol{\operatorname { c o s }}\left(180^{\circ}-\theta\right)=\left(\frac{x}{r}=\right) \ldots=$
$\boldsymbol{\operatorname { t a n }}\left(180^{\circ}-\theta\right)=\left(\frac{y}{x}=\right) \ldots=$
5.3 (a) $A^{\prime \prime}$ is a reflection of point A in the ... and the coordinates of point $A^{\prime \prime}$ are
(b) Write reflex XÔA" in terms of θ.

(c) Determine, first numerically, and then in terms of θ :

5.4 (a) $A^{\prime \prime \prime}$ is a reflection of point A in the . . . and the coordinates of point $\mathrm{A}^{\prime \prime \prime}$ are
(b) Write reflex XÔA"' in terms of θ \&
 write acute XÔA"' in terms of θ.
(c) Determine, first numerically, and then in terms of θ :

$$
\boldsymbol{\operatorname { s i n }}\left(360^{\circ}-\theta\right)=\left(\frac{y}{r}=\right) \ldots
$$

$\boldsymbol{\operatorname { c o s }}\left(360^{\circ}-\theta\right)=\left(\frac{x}{r}=\right)$.
$\boldsymbol{\operatorname { t a n }}\left(\mathbf{3 6 0 ^ { \circ }}-\boldsymbol{\theta}\right)=\left(\frac{y}{x}=\right) \ldots=$
(d) Determine, first numerically, and then in terms of θ :

$$
\begin{aligned}
& \sin (-\theta)=\left(\frac{y}{r}=\right) \ldots=\ldots \\
& \boldsymbol{\operatorname { c o s } (- \theta)}=\left(\frac{x}{r}=\right) \ldots=\ldots \\
& \boldsymbol{\operatorname { t a n }}(-\boldsymbol{\theta})=\left(\frac{y}{x}=\right) \ldots=\ldots
\end{aligned}
$$

MARKS HAVE NOT BEEN ALLOCATED IN 'THEORY' Q5 \& 6 .
4.3 The diagram alongside shows a circle with chords QP and RP. Chord SP bisects QP̂R.

The tangent at S meets PQ produced at A and $P R$ produced at $B . Q$ and S and also S and R are joined.

(a) Give, with reasons, three angles each of which is equal to \hat{S}_{1}.
(b) Give the reason why $\hat{R}_{1}=\hat{Q}_{2}$.
(c) Prove that $\hat{S}_{3}=\hat{A}$
5. In the figure below, $A B$ is the diameter of a semicircle with centre O. P is a point on $A B$ produced. $P C S$ is a tangent touching the circle at C , and SO is perpendicular to AB . SO and AC intersect at $\mathrm{T} . \mathrm{BC}$ and OC are drawn.

5.1 If $\hat{\mathrm{C}}_{1}=x$, give, with reasons, two other angles each of which is equal to x.
5.2 Prove that $\mathrm{P} \hat{C} T=\hat{\mathrm{T}}_{2}$.
5.3 Give, with reasons, the magnitude of the following angles in terms of x :
(a) CŜT
(b) CÔB
(c) \hat{P}
(4)(2)(2)

3Apply basic Gr 9 knowledge of similar Δ^{s} and the Theorem of Pythagoras in 5.4 and 5.5.
5.4 Name (without giving reasons) TWO triangles which are similar to \triangle CTO.
5.5 Prove that $\mathrm{PA} . \mathrm{PB}=\mathrm{OP}^{2}-\mathrm{OA}^{2}$.

See p. ix for the Summary of the

 Converse Theorems in \odot Geometry.6. $P Q$ and $P S$ are tangents to the circle at the points Q and $\mathrm{S} . \mathrm{PT} \| \mathrm{SR}$ with T on QR . $\mathrm{P} \hat{\mathrm{S}} \mathrm{Q}=x$.

6.1 Name, with reasons, three other angles each equal to x.
6.2 Prove that PQTS is a cyclic quadrilateral.
6.3 Prove that $\triangle \mathrm{TSR}$ is isosceles.
6.4 If TQ is a tangent to circle QVP, prove that QSR is a right-angled triangle.
7.1 (a) B and C are points on a circle and the tangents at these points meet at A. Then
(b) The angle between a tangent and a chord drawn from the point of contact is
7.2 In the figure, the two circles touch externally at R.

The straight line passing through R and the centre of the smaller circle meets the common tangent $A B$ produced at the point C.
The common tangent at R meets $A B$ at T.

(a) Prove that $A \hat{R} B=90^{\circ}$.
(b) Prove that CR is a tangent to the circle which passes through A, R and B.
8. In the following figure, $A B$ and $A C$ are tangents to a circle with centre O.
$B D$ is a diameter and $C E \perp B D$.
$B C$ and $C O$ are drawn. $A O$ cuts $B C$ at M.

8.1 ABOC is a cyclic quadrilateral. CEOM is a cyclic quadrilateral.

9.1 If $P Q$ and $R S$ are chords of a circle, and $P Q=R S$ then $P Q$ and RS subtend equal angles in the same segment at the circumference of the circle.
State the converse of this useful fact.
9.2 Cyclic quadrilateral $A B C D$ has $D C=C B$.
The tangents at D and C meet at E.
(a) If $\mathrm{BA} \mathrm{C}=x$, find giving reasons,
five other angles
each equal to x.

(10)
(b) Prove that $\mathrm{CB}^{2}=\mathrm{EC} . \mathrm{DB}$.

Know your theory!

Each topic has definitions, vocabulary, facts, laws, theorems . . . a 'blueprint'! Be sure to study all the concepts involved, as all the calculations require you to have and apply this knowledge.

Do so with confidence!

2.3 (a) and (f) are not functions;

A graph is only a function if for each x-value there is only one y-value. In the case of (a) and (f), each x-value has more than one y-value.

The vertical line test: A vertical line would cut these graphs more than once

Domain

(a) $x=-2$
(b) $x \in \mathbb{R}$
(c) $x \in \mathbb{R}$
(d) $x \neq 0 ; x \in \mathbb{R}$
(e) $x \in \mathbb{R}$
(f) $x \geq 0 ; x \in \mathbb{R}$

Range

$y \in \mathbb{R}$
$y \in \mathbb{R}$
$y>0 ; y \in \mathbb{R}$
$y \neq 0 ; y \in \mathbb{R}$
$y \geq 0 ; y \in \mathbb{R}$
$y \in \mathbb{R}$
2.5 (c) $\mathrm{y}=0<\ldots$ the x-axis
(d) $\mathbf{y}=0<\ldots$ the x-axis
\& $\boldsymbol{x}=0<\ldots$ the y-axis
3.1 (a) reflection in the \mathbf{y}-axis
(b) reflection in the \mathbf{x}-axis
(c) reflection in the line $\mathbf{y}=\mathbf{x}$

3.2 (a) $x \rightarrow-x$
(b) $x \rightarrow x$
$y \rightarrow y<$
$\mathrm{y} \rightarrow-\mathrm{y}<$
(c) $\left.\begin{array}{ll}x \rightarrow y \\ y & \rightarrow \boldsymbol{x}<\end{array} \begin{array}{c}\text { i.e. } x \& y \\ \text { swop }\end{array}\right)$
3.3 (a) $A(1 ; 0), B(0 ;-1), \quad C(2 ; 0), \quad D(0 ;-1), \quad E(1 ; 0), \quad F(4 ; 2)$
(b) (i) $y=x-1<$
(ii) $y=\frac{1}{2} x-1<$
(iii) $x=2^{y}<$

Note: - In (c), understandably, x and y are swopped in the equation to get the reflection in $y=x$.

- Now swop x \& y in the given equations in (a) \& (b):

Given:
(a) $y=x+1$
(b) $y=2 x+2$

The reflection: $x=y+1$
$x=2 y+2$
Now make y the subject:

$$
\left.\begin{array}{rl}
y+1 & =x \\
\therefore y & =x-1 \ll 2 y+2
\end{array}\right)=x, ~ \begin{aligned}
\therefore 2 y & =x-2 \\
\therefore y & =\frac{x}{2}-1<
\end{aligned}
$$

These are the equations determined by inspection above.

4.2 (b) and (c) are, but (a) is not. \&

Note: Restricting the domains ($x \geq 0$ or $x \leq 0$) ensured that the reflections are functions.
4.3 (a) $x=y^{2}$
(b) $y=(+) \sqrt{x}<$
(c) $y=-\sqrt{x}<$
$y^{2}=x$
$y= \pm \sqrt{x}<$
Note: The graph $y= \pm \sqrt{x}$ is split into 2 graphs: $y=+\sqrt{x}$ and $y=-\sqrt{x}$
5.1 A translated up 1 unit <
B translated down 2 units <
C translated 1 unit to the left <
D translated 2 units to the right $<$
E reflection in the y-axis <
F reflection in the x-axis <

5.2 (a) A
(b) D
(c) C
(d) E
(e) B
(f) F
6.1 All except (c), because in (c), there are 2 values of y for each x-value (except for $x=0$). <
Note: This graph will be cut twice by a vertical line. (All other graphs will only be cut once.)
6.2 (a) (3)
(b) (2)
(c) (5)
*(d) (6)
*Note: (d) - One has to have $x \geq 0$ in $y=\sqrt{x}$
$\ldots \sqrt{\text { a negative number }}$ is imaginary

$6.3 \mathrm{y}= \pm \sqrt{x} \Rightarrow \mathrm{y}^{2}=x$ and y can be + or -
The sketch:

$$
\begin{aligned}
& \cdots \begin{array}{l}
\text { Both arms' of } \\
\text { the parabola. }
\end{array} \\
& x=y^{2} \text { or } y= \pm \sqrt{x}
\end{aligned}
$$

7. B is not a function <

For each value of x (in the domain) there is not only one y-value. (A vertical line would cut this graph twice.)
8.1 Equation of $\mathbf{f}: \mathbf{y}=2^{x+a}$

If a point lies on a graph, its co-ords make the eqn. true!

Subst. pt. (1; 8): $8=2^{1+a}$

$1+a=3$

$$
\therefore a=2<
$$

$8.2 \mathrm{~h}: ~ y=2^{x+2-2}-5$
$y=2^{x}-5<$
$8.3 y=-5<$
Eqn. of $\mathbf{f}: y=2^{x+2}$

9.1 No:
9.2 Not a function if $x_{P}=x_{Q}$

$$
\text { i.e. if } \begin{aligned}
2 x & =x+5 \\
\therefore x & =5
\end{aligned}
$$

For $x=-1$
$(-1 ;-2)$
y can be 2 or -2. <

A vertical line will cut the graph more than once.
$10.1 \quad x \neq 4 ; x \in \mathbb{R}<$

$$
\left(\text { In } y=\frac{1}{x-4}: x-4 \neq 0 \quad \therefore x \neq 4\right)
$$

$10.2 x=4$ \& $y=0<$ $\therefore(x-5)(x+1)=0$

$$
1021
$$

$$
10.3 \text { (a) } y=\frac{1}{x-4+2}+1
$$

$11.1 x$-intercepts: $\mathbf{f}(x)=0 \Rightarrow x^{2}-4 x-5=0 \quad\left\{\begin{aligned} & \Rightarrow(x-5)(x+1)=0\end{aligned}\right.$

$$
y=\frac{1}{x-2}+1<
$$

(b) $x=2<$ and $y=1<$

$$
\therefore x=5 \text { or }-1<
$$

$\left(-\cos 60^{\circ}\right)\left(-\sin 30^{\circ}\right)\left(-\tan 60^{\circ}\right)$ $\left(+\sin 30^{\circ}\right)\left(+\tan 30^{\circ}\right)\left(-\cos 60^{\circ}\right)$
$=+\frac{\tan 60^{\circ}}{\tan 30^{\circ}}$
$=\frac{\sqrt{3}}{\frac{1}{\sqrt{3}}} \ldots\left(=\sqrt{3} \times \frac{\sqrt{3}}{l}\right)$
$=3<$
$4 \frac{\left(+\cos 60^{\circ}\right)\left(-\tan 30^{\circ}\right)^{2}}{\left(-\sin 45^{\circ}\right)^{2}}$

$$
\begin{aligned}
& =\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{\sqrt{3}}\right)^{2}}{\left(-\frac{1}{\sqrt{2}}\right)^{2}} \\
& =\frac{\left(\frac{1}{2}\right)\left(\frac{1}{3}\right)}{\left(\frac{1}{2}\right)}=\frac{1}{3}<
\end{aligned}
$$

$2.1 \frac{1}{\sqrt{3}} \cdot\left(\frac{1}{\sqrt{2}}\right)^{2}\left(\sin 60^{\circ}\right)-\frac{1}{2}\left(-\tan 45^{\circ}\right)\left(-\cos 45^{\circ}\right)^{2}-\left(-\sin 30^{\circ}\right)$

$$
\left.\left.\begin{array}{lll}
=\frac{1}{\sqrt{3}} \cdot \frac{1}{2} \cdot\left(\frac{\sqrt{3}}{2}\right) & - & \frac{1}{2}(-1)\left(-\frac{1}{\sqrt{2}}\right)^{2}
\end{array}\right)-\left(-\frac{1}{2}\right)\right]\left(\begin{array}{ll}
360^{\circ}+225^{\circ}: & \\
=\frac{1}{4}+\frac{1}{2}\left(\frac{1}{2}\right)+\frac{1}{2} & \\
=1< & \\
\cos 585^{\circ}=\cos 225^{\circ}=-\cos 45^{\circ}
\end{array}\right)
$$

$2.2 \frac{\left(-\tan 45^{\circ}\right)\left(-\sin 50^{\circ}\right)\left(-\tan 60^{\circ}\right)}{\left(-\cos 40^{\circ}\right)\left(-\tan 60^{\circ}\right)\left(+\sin 30^{\circ}\right)}$ $\left(-\cos 40^{\circ}\right)\left(-\tan 60^{\circ}\right)\left(+\sin 30^{\circ}\right)$
$=\frac{(-1)\left(-\sin 50^{\circ}\right)}{\left(-\cos 40^{\circ}\right)\left(\frac{1}{2}\right)}$

$=-\frac{\cos 40^{\circ}}{\left(\cos 40^{\circ}\right)\left(\frac{1}{2}\right.}$. $\sin 50^{\circ}=\cos 40^{\circ}$
$=-2<$
3. $\quad\left(\tan 30^{\circ}\right)\left(+\sin 60^{\circ}\right)\left(-\sin 80^{\circ}\right)$

$$
\begin{aligned}
& =\frac{\left(\frac{1}{\sqrt{3}}\right)\left(\frac{\sqrt{3}}{2}\right)\left(-\sin 80^{\circ}\right)}{\left(-\frac{1}{\sqrt{2}}\right)\left(-\frac{1}{\sqrt{2}}\right)\left(\sin 80^{\circ}\right)} \\
& =-\frac{\frac{1}{2}}{\frac{1}{2}}=-1<
\end{aligned}
$$

4.1

	$\frac{+\sin 43^{\circ}}{-\cos 47^{\circ}}$	4.2	$\frac{\left(\sin 80^{\circ}\right)\left(-\cos 60^{\circ}\right)}{\left(\sin 80^{\circ}\right)\left(+\sin 30^{\circ}\right)}$
$=$	$-\frac{\cos 47^{\circ}}{\cos 47^{\circ}} \ldots 43^{\circ}+47^{\circ}=90^{\circ}!$	$=$	$\frac{\left(-\frac{1}{2}\right)}{\left(\frac{1}{2}\right)}\left[\right.$ OR: $\left.\frac{-\sin 30^{\circ}}{\sin 30^{\circ}}\right]$
$=$	$-1<$	$=-1$	

$180^{\circ} / 360^{\circ}$ Rule (no ratio changes!)

5.1 (a) $A(4 ; 3)<$
(b) $\sin \theta=\frac{3}{5}<$
$\cos \theta=\frac{4}{5}<$

5.2 (a) y-axis $<; A^{\prime}(-4 ; 3)<$
(b) $X \hat{O} A^{\prime}=\mathbf{1 8 0} \boldsymbol{0} \boldsymbol{-}<$
(c) $\boldsymbol{\operatorname { s i n }}\left(180^{\circ}-\theta\right)=\frac{3}{5}=\boldsymbol{\operatorname { s i n }} \theta<$

$\cos \left(180^{\circ}-\theta\right)=-\frac{4}{5}=-\cos \theta$	$\text { see } 5.1(b)$ above
$\tan \left(180^{\circ}-\theta\right)=-\frac{3}{4}=-\tan \theta<$	

5.3 (a) the origin $<: A^{\prime \prime}(-4 ;-3)<$
(b) $X O A^{\prime \prime}=\mathbf{1 8 0}^{\boldsymbol{\circ}} \boldsymbol{+ \boldsymbol { \theta }}<$
(c) $\boldsymbol{\operatorname { s i n }}\left(180^{\circ}+\theta\right)=-\frac{3}{5}=-\boldsymbol{\operatorname { s i n }} \theta<$ $\boldsymbol{\operatorname { c o s }}\left(180^{\circ}+\theta\right)=-\frac{4}{5}=-\boldsymbol{\operatorname { c o s }} \theta<$ $\tan \left(180^{\circ}-\theta\right)=\frac{-3}{-4}=\frac{3}{4}=\tan \theta<$

5.4 (a) x-axis $<; A^{\prime \prime \prime}(4 ;-3)<$
(b) refl. XOAA"' $=\mathbf{3 6 0} \mathbf{}^{\circ} \boldsymbol{-} \boldsymbol{\theta}<\&$ acute $X \hat{O} A^{\prime \prime \prime}=-\boldsymbol{\theta}<$
(c) $\boldsymbol{\operatorname { s i n }}\left(360^{\circ}-\theta\right)=-\frac{3}{5}=-\boldsymbol{\operatorname { s i n }} \theta<$
$\cos \left(360^{\circ}-\theta\right)=\frac{4}{5}=\cos \theta<\rightarrow \rightarrow_{\theta}^{360^{\circ}}-\theta$
$\boldsymbol{\operatorname { t a n }}\left(360^{\circ}-\theta\right)=-\frac{3}{4}=-\boldsymbol{\operatorname { t a n }} \boldsymbol{\theta}<$
(d) $\boldsymbol{\operatorname { s i n }}(-\theta)=-\frac{3}{5}=-\boldsymbol{\operatorname { s i n }} \theta<$
$\cos (-\theta)=\frac{4}{5}=\cos \theta<$
$\tan (-\theta)=-\frac{3}{4}=-\boldsymbol{\operatorname { t a n }} \boldsymbol{\theta}<$

90° Rule (co-ratios!!!)

(a) $O A B=90^{\circ}-\boldsymbol{\theta}<$
(b) $\mathbf{y}=\mathbf{x}<$
(c) $A^{\prime}(3 ; 4)<$

NB: The acute \angle^{s} in the Δ, θ and $90^{\circ}-\theta$, have swopped positions! As well as the two right-angled sides (4 \& 3)

(d) $\begin{aligned} \sin \left(90^{\circ}-\theta\right) & =\frac{4}{5}=\cos \theta \\ \cos \left(90^{\circ}-\theta\right) & =\frac{3}{5}=\sin \theta\end{aligned}$
(a) $A^{\prime}(-3 ; 4)<$

(b) $\mathbf{B O} \mathbf{A A}^{\prime}=\boldsymbol{\theta}+90^{\circ}$ or $90^{\circ}+\boldsymbol{\theta}$
(c)

$$
\begin{aligned}
& \sin \left(90^{\circ}+\theta\right)=\frac{4}{5}=\cos \theta< \\
& \cos \left(90^{\circ}+\theta\right)=-\frac{3}{5}=-\sin \theta<
\end{aligned}
$$

$180^{\circ} / 360^{\circ} \& \mathbf{9 0}^{\circ}$ Rule: Mixed

(a) $-\sin 45^{\circ}<$
(b) $-\cos 30^{\circ}<$
(c) $+\tan 60^{\circ}<$
(d) $+\sin 30^{\circ}<$
(e) $-\cos 60^{\circ}<$
(f) $+\tan 45^{\circ}<$
(g) $+\tan 60^{\circ}<$
(h) $+\sin 45^{\circ}<$
(i) $+\cos 60^{\circ}<$

$9.1 \quad x=35^{\circ}<\ldots 35^{\circ}+55^{\circ}=90^{\circ}$
$9.2 \mathrm{y}=40^{\circ}<\ldots \cos \left(180^{\circ}-\theta\right)=-\cos \theta$
(b) $\quad A \hat{C} B=y \quad \ldots$ alternate $\angle^{s} ; A D \| B C$ \therefore DCB $=x+y$ $\therefore \hat{A B H}=x+y \quad \ldots$ corresponding $\angle^{s} ; A B \| C D$ But $\hat{F}=x+y$ in 14.2 (a)
$\therefore \hat{A B H}=\hat{F}$
\therefore HBEF is a cyclic quad. . . . ext. $\angle=$ int. opp. \angle^{s}
$\therefore \hat{A H B}=\hat{B E F}\left(=90^{\circ}\right) \quad \ldots$ ext. \angle of cyclic. quad.
i.e. $A \hat{H} C=90^{\circ}<$

$\therefore B \hat{P} A+B \hat{Q} C+A \hat{R} C=3 \times 180^{\circ}-\left(\hat{C}_{2}+\hat{A}_{2}+\hat{B}_{2}\right)$

$$
\begin{aligned}
& =3 \times 180^{\circ}-180^{\circ} \ldots \angle \operatorname{sum} \text { in } \Delta \\
& =2 \times 180^{\circ} \\
& =360^{\circ}<
\end{aligned}
$$

EXERCISE 10.2

Circle Geometry:

Including Tangents

1.1 Theorem

 EXAMINABLE PROOFS on p. i (at the back of this book).
1.2 (a) $\hat{A}_{2}=x<$
. tan chord theorem
(b) $A E \hat{D}=90^{\circ}$
diameter \perp tangent
$\mathrm{E}_{1}=90^{\circ}-x<$
(c) In $\triangle \mathrm{EFC}, \hat{\mathrm{F}}_{3}=90^{\circ} \ldots$ line from centre to midpoint of chord

$$
\hat{c}_{2}=x<\quad \ldots \hat{E}_{1}=90^{\circ}-x ; \angle \operatorname{sum} \text { in } \Delta
$$

(d) $\hat{A}_{1}=\hat{C}_{2}=x<$
\angle^{s} in same segment

$\hat{A}_{3}=x<\ldots$ alt $\angle^{s} ; A B \| E D$ tangent NAT; chord AD

Copyright © The Answer Series: Photocopying of this material is illegal
$5.1 \quad \hat{\boldsymbol{A}}=\boldsymbol{x}<\ldots$ tan chord theorem $\therefore \hat{C}_{3}=x<$

| BCA | $=90^{\circ}$ | $\ldots \angle$ in semi $-\odot$ |
| ---: | :--- | ---: | :--- |
| $\therefore \mathrm{PC} T$ | $=90^{\circ}+x$ | $\ldots \hat{C}_{l}=x$ |

OR: OĈP $=90^{\circ} \quad \ldots$ radius

$$
P \hat{C} T=90^{\circ}+x \quad \ldots \hat{C}_{3}=x
$$

$$
\text { \& } \hat{T}_{2}=\hat{O}_{3}+\hat{A} \quad \ldots \text { exterior } \angle o f \triangle T A O
$$

$$
=90^{\circ}+x \quad \ldots S O \perp A B, \hat{A}=x
$$

$$
P \hat{C} T=\hat{T}_{2}
$$

5.3 (a) In $\triangle C A P: \hat{\mathrm{P}}=180^{\circ}-\left(x+90^{\circ}+x\right) \quad \ldots \angle$ sum in Δ

$$
=90^{\circ}-2 x
$$

In \triangle SOP: $\hat{S}=2 x \ldots S \hat{O} P=90^{\circ} ; \angle$ sum in Δ
i.e. CŜT $=2 x<$
(b) $\hat{O}_{1}=\hat{C}_{3}+\hat{A} \quad \ldots$ ext. \angle of $\triangle C A O$
i.e. $\mathbf{C O} \mathrm{B}=2 x<\ldots \hat{C}_{3}=\hat{A}=x$ in 5.1
(c) $\hat{P}=90^{\circ}-2 x<\ldots$ see 5.3(a)
5.4 $\triangle A C P \& \Delta C B P(||\mid \triangle C T O[x ; 90+x])<$
$5.5 O P^{2}-O A^{2}=(O P+O A)(O P-O A)$

$$
=\mathrm{PA} .(O \mathrm{P}-O B) \quad \ldots O A=O B=\text { radius }
$$

$$
=P A . P B
$$

OR:

| In $\triangle O C P:$ | $O C \hat{P}=90^{\circ}$ | \ldots radius \perp tangent |
| ---: | :--- | ---: | :--- |
| \therefore | $P C^{2}=O P^{2}-O C^{2}$ | \ldots Pythagoras |
| $\therefore P C^{2}=O P^{2}-O A^{2} \ldots$ (1) | $\ldots O C=O A=$ rad. | |

$\triangle A C P \| \triangle C B P \quad \ldots$ both $\|\| \Delta C T O$ in 5.4

| $\therefore \frac{P A}{P C}$ | $=\frac{P C}{P B}$ | \ldots proportional sides |
| ---: | :--- | ---: | :--- |
| $\therefore P C^{2}$ | $=P A \cdot P B$ | \ldots 2 |
| $P A \cdot P B$ | $=O P^{2}-O A^{2}$ | \ldots from 1 \& (2) |

6.1 $\quad \hat{S}_{1}(=x)=\hat{Q}_{1} \quad \ldots$ tans from same point
$=\hat{R} \quad$... tan chord theorem
$=\hat{T}_{1} \quad \ldots$ corresponding $\angle^{s} ; P T \| S R$
\hat{Q}_{1}, \hat{R} and \hat{T}_{1} each equal $x<$
Questions on p. 37-39

EXAM PAPERS

PAPER A1

You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
Clearly show ALL calculations, diagrams, graphs, etc. that you have used in determining your answers.

Answers only will not necessarily be awarded full marks.
If necessary, round off answers to TWO decimal places, unless stated otherwise.

QUESTION 1

1.1 Solve for x in each of the following
1.1.1 $(2 x-1)(x+4)=0$
1.1.2 $3 x^{2}-x=5$
(Leave your answer correct to TWO decimal places.)
1.1.3 $x^{2}+7 x-8<0$
1.2 Given: $4 y-x=4$ and $x y=8$
1.2.1 Solve for x and y simultaneously.
1.2.2 The graph of $4 y-x=4$ is reflected across the line having equation $\mathrm{y}=x$. What is the equation of the reflected line?
1.3 The solutions of a quadratic equation are given by

$$
x=\frac{-2 \pm \sqrt{2 p+5}}{7} .
$$

For which value(s) of p will this equation have:
1.3.1 Two equal solutions, i.e. only 1 root
1.3.2 No real roots
1.4 Solve for $x: \sqrt{5-x}-x=1$

QUESTION 2

$2.13 x+1 ; 2 x ; 3 x-7$ are the first three terms of an arithmetic sequence. Calculate the value of x.
2.2 The first and second terms of an arithmetic sequence are 10 and 6 respectively.
2.2.1 Calculate the $11^{\text {th }}$ term of the sequence
2.2.2 The sum of the first n terms of this sequence is -560 . Calculate n

QUESTION 3

3.1 Given the geometric sequence: $27 ; 9 ; 3 \ldots$
3.1.1 Determine a formula for T_{n}, the $\mathrm{n}^{\text {th }}$ term of the sequence.
3.1.2 Why does the sum to infinity for this sequence exist? (1)
3.1.3 Determine S_{∞}.
3.2 The $\mathrm{n}^{\text {th }}$ term of a sequence is given by $\mathrm{T}_{\mathrm{n}}=-2(\mathrm{n}-5)^{2}+18$.
3.2.1 Write down the first THREE terms of the sequence. (3)
3.2.2 Which term of the sequence will have the greatest value?
3.2.3 What is the second difference of this quadratic sequence?
3.2.4 Determine ALL values of n for which the terms of the sequence will be less than -110 .

QUESTION 4

4.1 Consider the function $\mathrm{f}(x)=3.2^{x}-6$.
4.1.1 Calculate the coordinates of the y-intercept of the graph of f .
4.1.2 Calculate the coordinates of the x-intercept of the graph of f .
4.1.3 Sketch the graph of f. Clearly show ALL asymptotes and intercepts with the axes.
4.1.4 Write down the range of f
4.2 $S(-2 ; 0)$ and $T(6 ; 0)$ are the x-intercepts of the graph of $\mathrm{f}(x)=a x^{2}+\mathrm{b} x+\mathrm{c}$ and R is the y -intercept. The straight line through R and T represents the graph of $g(x)=-2 x+d$.
4.2.1 Determine the value of d.

4.2.2 Determine the equation of f in the form $f(x)=a x^{2}+b x+c$.
4.2.3 If $\mathrm{f}(x)=-x^{2}+4 x+12$, calculate the coordinates of the turning point of f.
4.2.4 For which values of k will $\mathrm{f}(x)=\mathrm{k}$ have two distinct roots?
4.2.5 Determine the maximum value of $\mathrm{h}(x)=3^{\mathrm{f}(x)-12}$.

QUESTION 5

The graph of
$\mathrm{f}(x)=-\sqrt{27 x}$ for $x \geq 0$ is sketched alongside.

The point $P(3 ;-9)$ lies on the graph of f.

5.1 Use the graph to determine the values of x for which $\mathrm{f}(x) \geq-9$.
5.2 Write down the equation of f^{-1} in the form $y=$ Include ALL restrictions.
5.3 Sketch f^{-1}, the inverse of f on the graph above. Indicate the intercept(s) with the axes and coordinates of ONE other point.
5.4 Describe the transformation from f to g if $\mathrm{g}(x)=\sqrt{27 x}$, where $x \geq 0$.

QUESTION 6

The graph of a hyperbola with equation $\mathrm{y}=\mathrm{f}(x)$ has the following properties:

- Domain: $x \in \mathbb{R}, x \neq 5$
- Range: $y \in \mathbb{R}, \mathrm{y} \neq 1$
- Passes through the point $(2 ; 0)$

Determine $\mathrm{f}(x)$.

Note:

TOPIC GUIDES on pp. 147 \& 148 can guide revision of specific sections throughout these papers.
$3.2 \quad T_{\mathbf{n}}=-2(\mathbf{n}-5)^{2}+18$
3．2．1 $T_{1}=-2(1-5)^{2}+18=-32+18=-14<$
$T_{2}=-2(2-5)^{2}+18=-18+18=0<$
$T_{3}=-2(3-5)^{2}+18=-8+18=10<$
3．2．2 If one drew a graph of $T_{n}=-2(n-5)^{2}+18$ ，
Compare to：$y=-2(x-5)^{2}+18$
then the turning point would be $(5 ; 18)$

The maximum value of T_{n}（which is 18 ）would occur when $n=5$ ．

The $5^{\text {th }}$ term＜
3．2．3
$1^{\text {st }}$ differences：
$2^{\text {nd }}$ differences：

T_{1}	T_{2}	T_{3}
-14	0	10

．The second difference $=-4<$

3．2．4 $T_{n}<-110$

$$
\begin{aligned}
& \therefore-2\left(n^{2}-10 n+25\right)+128<0 \\
& \therefore-2 n^{2}+20 n-50+128<0 \\
& \therefore-2 n^{2}+20 n+78<0 \\
& \therefore(-2) \quad \therefore n^{2}-10 n-39>0 \\
& \therefore(n+3)(n-13)>0 \\
&+\quad-\quad+ \\
&+\quad-\quad-\quad 13 \\
& \therefore \quad-\quad \text { or } n>13
\end{aligned}
$$

n is the number of terms $\quad \therefore n \geq 0$ and $n \in \mathbb{N}_{0}$

$$
\therefore n>13: n \in \mathbb{N}<
$$

4．1 $f(x)=3.2^{x}-6$
4．1．1 On the y－axis，$x=0$ ：

$$
\begin{aligned}
& f(0)=3.2^{0}-6=3-6=-3 \quad \ldots 2^{0}=1 \\
& \text { The y-intercept: }(0 ;-3)<
\end{aligned}
$$

4．1．2 On the x－axis，$y=0$ ，i．e．$f(x)=0$

$$
\begin{aligned}
3.2^{x}-6 & =0 \\
\therefore 3.2^{x} & =6 \\
\therefore 2^{x} & =2 \\
\therefore x & =1
\end{aligned}
$$

The x－intercept：$(1 ; 0)<$

4．1．4 $y>-6: y \in \mathbb{R}<$
4．2．1 By inspection， $\mathrm{d}=12<\ldots$ grad．，$m=-2 \& x$－int．（6；0）
OR：Substitute（6；0）into $y=-2 x+d$

$$
\begin{aligned}
\therefore 0 & =-2(6)+d \\
\therefore 12 & =d
\end{aligned}
$$

4．2．2 $\mathrm{f}(x)=\mathrm{a}(x+2)(x-6) \quad \ldots$ roots -2 and 6

$$
\therefore f(x)=a\left(x^{2}-4 x-12\right)
$$

The y－intercept：$-12 a=12$

$$
\begin{aligned}
& f(x)=-\left(x^{2}-4 x-12\right) \\
& f(x)=-x^{2}+4 x+12<
\end{aligned}
$$

$$
\begin{aligned}
& \text { Note: } \\
& \text { Candidates are } \\
& \text { penalised for } \\
& \text { not showing ALL } \\
& \text { their working. }
\end{aligned}
$$

4．2．3 The x－coordinate of the turning point is $x=\frac{-b}{2 a}=\frac{-(4)}{2(-1)}=2$ or $x=2 \quad \ldots$ halfway between the roots -2 and 6
\＆$f(2)=-(2)^{2}+4(2)+12=16$
The turning point is $(2 ; 16)<$
4．2．4 k＜ 16 ＜

all these lines cutf ftwice
\therefore there will be 2 distinct roots

4．2．5 $h(x)$ has a maximum value when $f(x)$ has a maximum value．
Maximum value of $\mathrm{f}(x)=16$
Maximum value of $\mathrm{f}(x)-12=16-12=4$
Maximum value of $h(x)=3^{4}=81<$
$5.10 \leq x \leq 3<$

5．2 The equation of $\mathrm{f}: \quad y=-\sqrt{27 x}$ for $x \geq 0$ The equation of $\mathrm{f}^{-1}: x=-\sqrt{27 y}$ for $\mathrm{y} \geq 0 \ldots x$ and y $x^{2}=27 y$ ；but remember：$x \leq 0$

$$
\div \text { 27) } \quad \therefore y=\frac{x^{2}}{27} \quad \ldots \text { or } y=\frac{1}{27} x^{2}
$$

$$
y=\frac{x^{2}}{27} \text { for } x \leq 0<
$$

5.3
Note：
f^{-1} is the
reflection of
fin the line
$y=x$

This point is a reflection of

（3；－9）in the dashed line

5．4 A reflection in the x－axis $<\ldots(x ; y) \rightarrow(x ;-y)$

6．The equation of the hyperbola：$y=\frac{a}{x-p}+q$

$$
y=\frac{a}{x-5}+1
$$

Substitute（2；0）：$\quad \therefore 0=\frac{a}{(2-5)}+1$

$$
\begin{aligned}
\therefore-1 & =\frac{a}{-3} \\
\times(-3) \quad \therefore 3 & =a \\
\therefore f(x)=\frac{3}{x-5} & +1
\end{aligned}
$$

2-in-1

Mathematics

LEVEL 3 \& 4 CHALLENGING QUESTIONS WITH SOLUTIONS

Anne Eadie \& Gretel Lampe

CAPS

Independent Events vs Mutually Exclusive Events

First study The Probability Rules on the previous page．

QUESTION 2

A survey concerning their holiday preferences was done with 180 staff members．The options they could choose from were to
－Go to the coast
－Visit a game park
－Stay at home
The results were recorded in the table below：

	Coast	Game Park	Home	Total
Male	46	24	13	83
Female	52	38	7	97
Total	98	62	20	180

2．1 Determine the probability that a randomly selected staff member：
2．1．1 is male
2．1．2 does not prefer visiting a game park
2．2 Are the events＇being a male＇and＇staying at home＇ independent events？Motivate your answer with relevant calculations．

Solutions

2．1．1 $P($ male $)=\frac{83}{180}<$ NB：$P(E)=\frac{n(E)}{n(S)}$

2．1．2 $P($ not game park $)=\frac{98+20}{180}$

$$
\begin{aligned}
& =\frac{118}{180} \\
& =\frac{59}{90}<\quad \ldots P(\text { coast or at home })
\end{aligned}
$$

2．2 $P(M$ and at home $)=\frac{13}{180}=0,07 \dot{2}$＜ $P($ male $)=\frac{83}{180}$ and $P($ at home $)=\frac{20}{180}$ $\mathrm{P}($ male $) \times \mathrm{P}($ at home $)=\frac{83}{180} \times \frac{20}{180}$

$$
=0,051 . .
$$

The events are not independent＜

QUESTION 3

For two events，A and B ，it is given that：

$$
\begin{aligned}
& P(A)=0,2 \\
& P(B)=0,63 \\
& P(A \text { and } B)=0,126
\end{aligned}
$$

Are the events，A and B ，independent？
Justify your answer with appropriate calculations．

Solution

Independent events：

For 2 events \mathbf{A} and \mathbf{B} to be INDEPENDENT
$\mathbf{P}(\mathbf{A}$ and $\mathbf{B})$ must be equal to $\mathbf{P}(\mathbf{A}) \times \mathbf{P (B)}$ called the PRODUCT Rule

So，calculate the value of each of these expressions to determine whether they are equal or not．

$\mathbf{P}(\mathbf{A}) \times \mathbf{P}(\mathbf{B})=0,2 \times 0,63=0,126$

But， $\mathbf{P}(\mathbf{A}$ and $\mathbf{B})=0,126$ also \ldots given
$\mathbf{P}(A) \times P(B)=\mathbf{P}(A$ and $B)$
The 2 events A and B are independent

> Note the layout of the PROOF;
> i.e. the answer must be JUSTIFIED!

NB：Do not confuse independent events with mutually exclusive events！

Mutually exclusive events：

For 2 events \mathbf{A} and \mathbf{B} to be MUTUALLY EXCLUSIVE
$\mathbf{P}(\mathbf{A}$ or $\mathbf{B})$ must be equal to $\mathbf{P}(\mathbf{A})+\mathbf{P}(\mathbf{B})$
called the SUM rule

So，necessarily：
$\mathbf{P}(\mathbf{A} \cap B)=0$
（A and \mathbf{B} do not overlap）

QUESTION 4

Given：$P(A)=0,45 ; \quad P(B)=y$ and $P(A$ or $B)=0,74$
Determine the value（s）of y if A and B are mutually exclusive．

Solution

$$
\begin{aligned}
\mathbf{P}(\mathbf{A} \text { or } \mathbf{B}) & =\mathbf{P}(\mathbf{A})+\mathbf{P}(\mathbf{B}) \quad \ldots \text { A and } B \text { are mutually } \\
\therefore 0,74 & =0,45+\mathrm{y} \\
\therefore \mathbf{y} & =0,29<
\end{aligned}
$$

QUESTION 5

Events A and B are mutually exclusive．It is given that：
－$P(B)=2 P(A)$
－$P(A$ or $B)=0,57$
Calculate $P(B)$ ．
（3）

Solution

$$
\begin{aligned}
\mathrm{P}(\mathrm{~A} \text { or } \mathrm{B}) & =\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B}) \quad \ldots A \text { \& } B \text { are mutually exclusive } \\
\therefore 0,57 & =\frac{1}{2} \mathrm{P}(\mathrm{~B})+\mathrm{P}(\mathrm{~B}) \quad \ldots \quad \begin{array}{l}
2 P(A)=P(B) \Rightarrow \\
P(A)=\frac{1}{2} P(B)
\end{array} \\
\therefore 1,5 \mathrm{P}(\mathrm{~B}) & =0,57 \\
\therefore \mathrm{P}(\mathrm{~B}) & =0,38 \text { < }
\end{aligned}
$$

CHALLENGING QUESTIONS \＆SOLUTIONS：PAPER 2

Trigonometry

Identities \＆Compound Angles

QUESTION 1

1．1 Given： $\sin 16^{\circ}=p$
Determine the following in terms of p ，without using a calculator．
1．1．1 $\sin 196^{\circ}$
1．1．2 $\cos 16^{\circ}$
（2）（2）

1．2 Given： $\cos (A-B)=\cos A \cos B+\sin A \sin B$
Use the formula for $\cos (A-B)$ to derive a formula for $\sin (A+B)$ ．

1．3 Simplify $\frac{\sqrt{1-\cos ^{2} 2 A}}{\cos (-A) \cdot \cos \left(90^{\circ}+A\right)}$ completely，given that $0^{\circ}<\mathrm{A}<90^{\circ}$

1．4 Given： $\cos 2 \mathrm{~B}=\frac{3}{5}$ and $0^{\circ} \leq \mathrm{B} \leq 90^{\circ}$
Determine，without using a calculator，the value of EACH of the following in its simplest form：
1．4．1 $\cos B$
1．4．2 $\sin B$
（3）（2）
1．4．3 $\cos \left(B+45^{\circ}\right)$
（4）$[21]$

Solutions

1．1．1 $\sin 196^{\circ}=\sin \left(180^{\circ}+16^{\circ}\right)=-\sin 16^{\circ}=-p<$
1．1．2 $\cos ^{2} 16^{\circ}=1-\sin ^{2} 16^{\circ}$

$$
\begin{aligned}
& =1-\mathrm{p}^{2} \\
\cos 16^{\circ} & =\sqrt{1-\mathrm{p}^{2}}
\end{aligned}
$$

OR： $\sin 16^{\circ}=\frac{p}{1}$

$$
\cos 16^{\circ}=\sqrt{1-\mathbf{p}^{2}}<
$$

Refer to Formulae \＆Derivations of Compound and Double Angles on $\mathrm{p} . \mathrm{v}$（in the study guide）
1.2

$$
\sin (A+B)=\cos \left[90^{\circ}-(A+B)\right]
$$

$=\cos \left[\left(90^{\circ}-A\right)-B\right]$
$=\cos \left(90^{\circ}-A\right) \cos B+\sin \left(90^{\circ}-A\right) \sin B$
$=\quad \sin A \cos B \quad+\quad \cos A \sin B<$
1.3

$$
\begin{aligned}
\frac{\sqrt{1-\cos ^{2} 2 A}}{\cos (-A) \cdot \cos \left(90^{\circ}+A\right)} & =\frac{\sqrt{\sin ^{2} 2 A}}{\cos A \cdot(-\sin A)} \\
& =\frac{\sin 2 A}{-\sin A \cos A} \\
& =\frac{2 \sin A \cos A}{-\sin A \cos A} \\
& =-2<
\end{aligned}
$$

1．4 Given： $\cos 2 B=\frac{3}{5}$
1．4．1 $2 \cos ^{2} B-1=\cos 2 B$

$$
\begin{aligned}
2 \cos ^{2} \mathrm{~B} & =\cos 2 \mathrm{~B}+1 \\
& =\frac{3}{5}+1 \\
& =\frac{8}{5} \\
\therefore \cos ^{2} \mathrm{~B} & =\frac{4}{5} \\
\therefore \cos \mathrm{~B} & =\frac{2}{\sqrt{5}}<\quad \ldots 0^{\circ} \leq B \leq 90^{\circ}
\end{aligned}
$$

1．4．2 $\sin ^{2} B=1-\cos ^{2} B$
$=1-\frac{4}{5}$
$=\frac{1}{5}$
$\sin B=\frac{1}{\sqrt{5}}<$

1．4．3 $\cos \left(B+45^{\circ}\right)=\cos B \cos 45^{\circ}-\sin B \sin 45^{\circ}$
$=\left(\frac{2}{\sqrt{5}}\right)\left(\frac{1}{\sqrt{2}}\right)-\left(\frac{1}{\sqrt{5}}\right)\left(\frac{1}{\sqrt{2}}\right)$
$=\frac{2}{\sqrt{5} \sqrt{2}}-\frac{1}{\sqrt{5} \sqrt{2}}$
$=\frac{1}{\sqrt{10}}<$

QUESTION 2

2．1 Prove the identity：
$\cos ^{2}\left(180^{\circ}+x\right)+\tan \left(x-180^{\circ}\right) \sin \left(720^{\circ}-x\right) \cos x=\cos 2 x$
2．2 Use $\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta$ to derive the formula for $\sin (\alpha-\beta)$ ．

2．3 If $\sin 76^{\circ}=x$ and $\cos 76^{\circ}=y$ ，show that
$x^{2}-y^{2}=\sin 62^{\circ}$ ，without using a calculator．

Solutions

2．1 LHS $=(-\cos x)^{2}+(+\tan x)(-\sin x) \cos x$
$=\cos ^{2} x-\left(\frac{\sin x}{\cos x}\right)\left(\frac{\sin x}{1}\right)\left(\frac{\cos x}{1}\right)$
$=\cos ^{2} x \quad-\sin ^{2} x$
$=\cos 2 x$
$=$ RHS＜
$2.2 \sin (\alpha-\beta)=\cos \left[90^{\circ}-(\alpha-\beta)\right]$
$=\cos \left[90^{\circ}-\alpha+\beta\right]$
$=\cos \left[\left(90^{\circ}-\alpha\right)+\beta\right]$
$=\cos \left(90^{\circ}-\alpha\right) \cos \beta-\sin \left(90^{\circ}-\alpha\right) \sin \beta$
$=\boldsymbol{\operatorname { s i n }} \alpha \boldsymbol{\operatorname { c o s }} \beta-\boldsymbol{\operatorname { c o s }} \alpha \boldsymbol{\operatorname { s i n }} \beta<\quad$ provided
$2.3 x^{2}-y^{2}$
$=\sin ^{2} 76^{\circ}-\cos ^{2} 76^{\circ}$
$=\cos ^{2} 14^{\circ}-\sin ^{2} 14^{\circ}$
$=\cos 2\left(14^{\circ}\right)$
$=\cos 28^{\circ}$
$=\sin \left(90^{\circ}-28^{\circ}\right)$
$=\boldsymbol{\operatorname { s i n }} 62^{\circ}<$
$\mathrm{OR}=-\left(\cos ^{2} 76^{\circ}-\sin ^{2} 76^{\circ}\right)$ $=-\cos 2\left(76^{\circ}\right)$
$=-\cos 152^{\circ}$
$=-\left(-\cos 28^{\circ}\right)$
$=\cos 28^{\circ}$ ，etc．

Use the Trig Summary －see p ．vi（in the study guide）

 －to master this topic！
Graphs \& Equations

 \& Compound Angles
QUESTION 3

In the diagram, the graph of $\mathrm{f}(x)=\cos 2 x$ is drawn for the interval $x \in\left[-270^{\circ} ; 90^{\circ}\right]$

3.1 Draw the graph of $\mathrm{g}(x)=2 \sin x-1$ for the interval $x \in\left[-270^{\circ} ; 90^{\circ}\right]$ on the grid. Show ALL the intercepts with the axes, as well as the turning points.
3.2 Let A be a point of intersection of the graphs of \mathbf{f} and \mathbf{g} Show that the x-coordinate of A satisfies the equation $\sin x=\frac{-1+\sqrt{5}}{2}$.
3.3 Hence, calculate the coordinates of the points of intersection of graphs of \mathbf{f} and \mathbf{g} for the interval $x \in\left[-270^{\circ} ; 90^{\circ}\right]$.

Remember double angle formulae:

There are $\mathbf{3}$ possible expansions for $\cos 2 x$
In this question, we choose the one which has (only) $\boldsymbol{\operatorname { s i n }} \boldsymbol{x}$ in it so that we can arrive at a quadratic equation in $\sin x$. Also see Q5.2 on the next page \& Q10.2 on p. 28.

Solutions

3.1

When sketching a graph, bear in mind:

- the shape
. . sine \& cosine graphs are wave-shaped
- the critical points (best found using point by point plotting) $\sin x:$

-1
\uparrow Study \& understand these critical values. You will be able to do the table mentally!
Take note of the given domain: $-270^{\circ} \leq x \leq 90^{\circ}$
- \boldsymbol{x}-intercepts:

$$
\begin{aligned}
& 2 \sin x-1=0 \\
& \therefore 2 \sin x=1 \\
& \therefore \sin x=\frac{1}{2} \\
& \therefore x=30^{\circ}
\end{aligned} \text { or where } y=0
$$

- Parameters: $\mathrm{y}=\mathbf{a} \sin \mathbf{k}(x+\mathbf{p})+\mathbf{q}$ The effects of $\mathbf{a}, \mathbf{k}, \mathbf{p}$ and \mathbf{q} are useful as a checkin tool, but tricky for accuracy as an initial method.

3.2 At the points of intersection, $\mathrm{f}(x)=\mathrm{g}(x)$ the solutions of this eqn. are
$\cos 2 x=2 \sin x-1$ the x-coordinates of the ! pts. of intersection of $\mathbf{f} \& \mathbf{g}$
$1-2 \sin ^{2} x=2 \sin x-1$ double angle formula
$-2 \sin ^{2} x-2 \sin x+2=0$
a quadratic equation in $\sin x$
$\div(-2) \quad \therefore \sin ^{2} x+\sin x-1=0$
quadratic formula required!

$$
\begin{aligned}
\sin x & =\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}} \quad \ldots a=1 ; b=1 ; c=-1 \\
& =\frac{-(1) \pm \sqrt{(1)^{2}-4(1)(-1)}}{2(1)} \quad \ldots \begin{array}{l}
\text { it is safest to use } \\
\text { brackets when } \\
\text { substituting }
\end{array} \\
& =\frac{-1+\sqrt{5}}{2} \text { or } \frac{-1-\sqrt{5}}{2}
\end{aligned}
$$

$\sin x$ only has values

But

$$
\frac{-1-\sqrt{5}}{2} \text { is }<-1
$$

this solution is invalid
里

We write:
For all values of x, $-1 \leq \sin x \leq 1$.

The x-coordinate of (any) point of intersection of \mathbf{f} and \mathbf{g} will satisfy the equation $\sin x=\frac{-1+\sqrt{5}}{2}<$
3.3 Now, to establish the \boldsymbol{x}-coordinates of the 2 points of intersection of \mathbf{f} and \mathbf{g} over the given domain

$$
\sin x=\frac{-1+\sqrt{5}}{2}
$$

$$
=+0,62 \quad \ldots \begin{gathered}
2 \\
\sin x \text { is pos. in } \\
\text { quadrants } \mathbf{I} \& \mathbf{I I}
\end{gathered} \quad \mathbf{N}
$$

$x=38,17^{\circ}+\mathrm{n}\left(360^{\circ}\right)$ or $x=180^{\circ}-38,17^{\circ}+\mathrm{n}\left(360^{\circ}\right), \mathrm{n} \in \mathbb{Z}$
$x=38,17^{\circ}$ or $-218,17^{\circ} \quad n=-1$ gives value in the domain.

And now, the y-coordinates

$$
y=\cos 2 x \quad \text { or } \quad 2 \sin x-1
$$

$$
f(x) \text { or } g(x)
$$

$=0,24$ (for both values of x)
The points of intersection are:
$\left(-218,17^{\circ} ; 0,24\right)$ and $\left(38,17^{\circ} ; 0,24\right)<$

PAPER 2: TRIGONOMETRY

Area, Sine \& Cosine Rules: PROOFS

(1) The Area rule

Area of $\triangle A B C=\frac{1}{2} a b \sin C$

Construction: Draw $A D \perp B C$

Proof: \quad Area of $\triangle A B C=\frac{1}{2}$ ah
(1)

$$
\begin{aligned}
& \text { But, in } \triangle A C D \text { : } \\
& \text { h }=b \sin C
\end{aligned}
$$

. 2
2 in (1): \therefore Area of $\triangle A B C=\frac{1}{2} a b \sin C$
(2) The Sine rule
$\frac{\sin A}{a}=\frac{\sin B}{b},=\frac{\sin C}{c}$

Construction: Draw $C D \perp A B$
Proof:

$$
\begin{aligned}
\ln \triangle \mathrm{ADC}: \quad \frac{\mathbf{h}}{\mathrm{b}} & =\sin \mathrm{A} \\
\therefore \quad \mathbf{h} & =\mathrm{b} \sin \mathrm{~A}
\end{aligned}
$$

\hat{B} acute

(1)

$$
\ln \triangle B D C: \quad \frac{\mathbf{h}}{a}=\sin E
$$

$$
\therefore \mathbf{h}=a \sin B
$$

Equating (1) \& 2: $\therefore \mathrm{b} \sin \mathrm{A}=\mathrm{a} \sin \mathrm{B}$

$$
\div a b) \quad \therefore \frac{\sin \mathbf{A}}{a}=\frac{\sin B}{b}
$$

$$
2
$$

Similarly, by drawing a perpendicular from \mathbf{B}, one can prove

$$
\sin A=\sin C
$$

$$
\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}
$$

(3) The Cosine rule

```
a}\mp@subsup{}{}{2}=\mp@subsup{b}{}{2}+\mp@subsup{c}{}{2}-2bc\operatorname{cos}
```

Construction: Draw $C D \perp B A$

A acute:

Proof: $\quad a^{2}=B D^{2}+h^{2}$
Pythagoras

$$
\begin{aligned}
& \therefore a^{2}=(c-A D)^{2}+h^{2} \\
&=c^{2}-2 c \cdot A D+\underbrace{A D^{2}+h^{2}} \\
&= c^{2}-2 c \cdot A D+b^{2} \quad \ldots \text { Pythagoras } \\
&= b^{2}+c^{2}-2 c \cdot A D \quad \ldots \text { (1) } \\
& \text { In } \triangle A D C: \quad \frac{A D}{b}=\cos A \\
& \therefore A D=b \cos A \quad \ldots \text { (2) }
\end{aligned}
$$

(2) in (1):
$\therefore a^{2}=b^{2}+c^{2}-2 b c \cos A$

For CONSTRUCTIONS in all 3 proofs,

Area Rule, Sine Rule \& Cosine Rule

Always construct the height from a vertex not involved in the formula

- To prove: Area $=\frac{1}{2} a b \sin \mathbf{C}$, draw a height from \mathbf{A} or \mathbf{B}, not \mathbf{C}
- To prove: $\frac{\sin \mathbf{A}}{a}=\frac{\sin \mathbf{B}}{b}$, draw a height from $\mathbf{C}, \operatorname{not} \mathbf{A}$ or \mathbf{B}.
- To prove: $a^{2}=b^{2}+c^{2}-2 b c \cos \mathbf{A}$, draw a height from \mathbf{B} or \mathbf{C}, not \mathbf{A}.

ANALYTICAL GEOMETRY TOOLKIT

FORMULAE

Consider two points $A\left(x_{1} ; y_{1}\right)$ and $B\left(x_{2} ; y_{2}\right)$:

DISTANCE

$\mathbf{A B}^{2}=\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2} \quad \ldots$ Thm. of Pythagoras $\mathbf{A B}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)^{2}}$

MIDPOINT

The co-ordinates of the midpoint, M, are the averages of the co-ordinates of the endpoints, A and B.

GRADIENT

$$
\mathbf{m}=\frac{\text { change in } y}{\text { change in } x}=\frac{\mathrm{y}_{2}-\mathrm{y}_{1}}{x_{2}-x_{1}}
$$

... the gradient of the line
Also:

$\boldsymbol{\operatorname { t a n }} \boldsymbol{\theta}=\frac{\text { opposite }}{\text { adjacent }}=\frac{\mathrm{y}_{2}-\mathrm{y}_{1}}{x_{2}-x_{1}}$
where θ is the angle of inclination of the line

The Gradient of a line

Values

positive

ZERO

Parallel lines

Parallel lines have equal gradients.

Perpendicular lines

If the gradient of line (1) is $\frac{\mathbf{2}}{\mathbf{3}}$ then the gradient of line 2 will be $-\frac{\mathbf{3}}{\mathbf{2}}$

Note: $\mathbf{m}_{\mathbf{0}} \times \mathbf{m}_{\mathbf{2}}=\left(+\frac{2}{3}\right)\left(-\frac{3}{2}\right)=\mathbf{- 1}$
i.e. The product of the gradients of \perp lines is $\mathbf{- 1}$

Collinear points

Three points $A, B \& C$ are collinear if the gradients of $\mathbf{A B} \& \mathbf{A C}$ are equal. (Note: Point \mathbf{A} is common.)

The Inclination of a line

Angles α and β below are angles of inclination.
The inclination of a line is the angle which the line makes with the positive direction of the x-axis.
α acute
 is positive
β obtuse

Gradient, $\mathbf{m}=\boldsymbol{\operatorname { t a n }} \alpha$ or $\boldsymbol{\operatorname { t a n }} \beta$
where α and β are the $\angle^{\mathbf{s}}$ of inclination.

Graphs in general

3 Basic facts

: Axis interceptsEvery point on the \mathbf{y}-axis has $\mathbf{x}=\mathbf{0}$ Every point on the \mathbf{x}-axis has $\mathbf{y}=\mathbf{0}$: The equation
The equation of a graph is true for all points on the graph.
\therefore The equation of the \mathbf{y}-axis is $\mathbf{x}=\mathbf{0}$
\& the equation of the \mathbf{x}-axis is $\mathbf{y}=\mathbf{0}$.: Types of graph
Different types/patterns are indicated by various equations.
e.g. $\mathbf{y}=\mathbf{m x} \boldsymbol{+} \mathbf{c}$ indicates a straight line $\mathbf{x}^{\mathbf{2}}+\mathbf{y}^{\mathbf{2}}=\mathbf{r}^{\mathbf{2}}$ indicates a circle

Important Facts

FACT 1 : Points on Graphs

If a point lies on a graph, the equation is true for its coordinates, i.e. the coordinates of the point satisfy the equation
so, substitute!
and, conversely,
If a point (i.e. its coordinates) satisfies the equation of a graph (i.e. 'makes it true'), then it lies on the graph.

FACT 2): Point(s) of Intersection

The coordinates of the point(s) of intersection of two graphs 'obey the conditions' of both graphs, i.e. they satisfy both equations simultaneously.

They are found:

- 'algebraically' by solving the 2 equations, or
- 'graphically' by reading from the graph.

THESE 2 FACTS ARE CRUCIAL!

STRAIGHT LINE GRAPHS \& their equations

Standard forms

Standard forms of the equation of a straight line:

- $y=m x+c$:
where $\mathbf{m}=$ the gradient \& $\mathbf{c}=$ the y-intercept
When $\mathrm{m}=0$: $\mathbf{y = c}$... a line $\| \mathbf{x}$-axis
When $\mathrm{c}=0: \mathbf{y}=\mathbf{m x} \ldots$ a line through the origin
Also: $\mathbf{x}=\mathbf{k}$... a line $\| \mathbf{y}$-axis
- $y-y_{1}=\mathbf{m}\left(x-x_{1}\right)$:
where $\mathbf{m}=$ the gradient \& $\left(\mathbf{x}_{1} ; \mathbf{y}_{\mathbf{1}}\right)$ is a fixed point.

General form

The general form of the equation of a straight line is $\mathbf{a x}+\mathbf{b y}+\mathbf{c}=\mathbf{0}$, e.g. $2 x+3 y+6=0$

CIRCLES

\& their equations

Circles with the origin as centre

True of any point ($\mathbf{x} ; \mathbf{y}$) on a circle with centre ($\mathbf{0} ; \mathbf{0}$) and radius \mathbf{r} is that:

$$
\begin{aligned}
& \mathbf{x}^{\mathbf{2}}+\mathbf{y}^{\mathbf{2}}=\mathbf{r}^{\mathbf{2}} \\
& \text { Thm. of Pythag.! }
\end{aligned}
$$

Circles with any given centre

True of any point ($\mathbf{x ;} \mathbf{y}$)
on a circle with
centre ($\mathbf{a ;} \mathbf{b}$)
and radius \mathbf{r} is that:

$$
(x-a)^{2}+(y-b)^{2}=r^{2}
$$

Distance formula! (Thm. of Pythag.)

Converting the equation of a circle

General form: $\mathrm{A} x^{2}+\mathrm{B} x+\mathrm{C} y^{2}+\mathrm{Dy}+\mathrm{E}=0$
to Standard form: $(x-a)^{2}+(y-b)^{2}=r^{2}$
(using completion of squares)
e.g. $x^{2}-6 x+y^{2}+8 y-25=0$
$x^{2}-6 x+y^{2}+8 y=25$
$x^{2}-6 x+\mathbf{3}^{2}+y^{2}+8 y+\mathbf{4}^{\mathbf{2}}=25+\mathbf{9}+\mathbf{1 6}$

$$
\therefore(x-3)^{2}+(y+4)^{2}=50
$$

This is the equation of a circle with:
centre $(3 ;-4)$ \& radius, $r=\sqrt{50}(=5 \sqrt{2})$ units

A Tangent to a circle . . .

is perpendicular to the radius of the circle at the point of contact.

To find the equation of a tangent, use ' m and 1 point' in the straight line equation:
$y-y_{1}=m\left(x-x_{1}\right)$
e.g. $\mathrm{m}_{M P}=2 \Rightarrow \mathrm{mPQ}_{\mathrm{MP}}=-\frac{1}{2}$
(\because radius $\mathrm{MP} \perp$ tangent PQ)
Point(s) of intersection of a Line and a Circle

A line and a circle either
(1) 'cut' (twice!) [secant] (2 points in common)

or
(2) 'touch' (once!) [tangent] (1 point in common)
or

don't cut or touch (no points in common)

