Hands on Grade 7 Problem Solving with TAS

1. The sum of a square number and a cube number is equal to a square number. List the natural numbers less than or equal to 10 that satisfy this condition.

2. The difference between a cube number and a square number is a square number. List the integers less than or equal to 10 that satisfy this condition.

3. Find two pairs of square numbers that have a sum of 130.
4. Calculate the value of the expression below:

$$
\left(1-\frac{1}{2}\right) \times\left(1-\frac{1}{3}\right) \times\left(1-\frac{1}{4}\right) \times\left(1-\frac{1}{5}\right) \times \ldots \times\left(1-\frac{1}{500}\right)
$$

5. Without doing any calculations, arrange the fractions $\frac{9}{10} ; \frac{11}{12} ; \frac{14}{15}$ in descending order.
6. There are some rabbits and some rabbit hutches. If seven rabbits are put into each hutch, one rabbit is left without a hutch.

If 9 rabbits are put into each hutch, one hutch is left empty.

How many rabbit hutches and how many rabbits are there?
7. Mpho is 5 times as old as Thapelo and half as old as Dumisani. The product of their ages is 400 . Calculate the sum of their ages.

8. Bongani has 40 m of fencing and plans to build a rectangular enclosure for his chickens.

Determine the dimensions of the rectangle for which the chicken enclosure will have maximum area, given that the dimensions are natural numbers.

D
9.

$A B C D$ is a rectangle with E, F, G and H midpoints of the sides as shown.
An arrow is shot at random onto the rectangle.
What is the probability that the arrow strikes

$9.1 \Delta \mathrm{EBF}$?

9.2 the unshaded area of the rectangle?
10.

10.1 What is the ratio of the shaded area to the unshaded area?
10.2 Calculate the area of $\Delta \mathrm{MNQ}$ in two different ways.

Hands on Grade 7 Problem Solving with TAS

-óSolutions -ó

1. $1^{2}=1$
$2^{2}=4$
$3^{2}=9$
$4^{2}=16$
$5^{2}=25$
$6^{2}=36$
$7^{2}=49$
$8^{2}=64$
$9^{2}=81$
$10^{2}=100$

Numbers that end in 2, 3, 7 or 8 cannot be perfect squares.

Numbers
Calculations

$1^{2}=1$	1	$1^{2}+1^{3}=1+1=2$	\mathbf{x}
$2^{2}=4$	2	$2^{2}+2^{3}=4+8=12$	\mathbf{x}
$3^{2}=9$	3	$3^{2}+3^{3}=9+27=36$	\checkmark
$4^{2}=16$	4	$4^{2}+4^{3}=16+64=80$	\mathbf{x}
$5^{2}=25$	5	$5^{2}+5^{3}=25+125=150$	\mathbf{x}
$6^{2}=36$	6	$6^{2}+6^{3}=36+216=252$	\mathbf{x}
$7^{2}=49$	7	$7^{2}+7^{3}=49+343=392$	\mathbf{x}
$8^{2}=64$	8	$8^{2}+8^{3}=64+512=576$	\checkmark
$9^{2}=81$	9	$9^{2}+9^{3}=81+729=810$	\mathbf{x}
$10^{2}=100$	10	$10^{2}+10^{3}=100+1000=1100$	\mathbf{x}

Rule out 2, 12, 252, 392

- each of these numbers end in 2

$$
80=16 \times 5
$$

$$
150=10 \times 5
$$

$$
810=81 \times 10
$$

$$
1100=11 \times 100
$$

Is 576 a square number?
$20^{2}=400$
21^{2} ends in a 1
22^{2} ends in a 4
23^{2} ends in a 9
24^{2} ends in 6

Continued on next page.

24×24
$=(20+4) \times(20+4)$
$=400+80+80+16$
$=400+160+16$
$=576$

If you use the same number, there are two possible answers, 3 or 8.
(Go back to Page 1 to find the solutions in the table.)
If you used different numbers, then 1 and 2 must be used together as follows:
$1^{2}+2^{3}=1+8=9$

Why these numbers?

If the number is x, then

$$
\begin{aligned}
& x^{2}+x^{3} \\
= & x^{2}+x^{2} \times x \\
= & x^{2}(1+x)
\end{aligned}
$$

x^{2} is a perfect square, so $x+1$ must also be a perfect square.
This means that x must be 1 less than a square number.
3 is 1 less than 4 and 8 is 1 less than 9.
2. A number than ends in $2,3,7$ or 8 cannot be a perfect square.

Number Calculations

1	$1^{3}-1^{2}=1-1=0$	\checkmark
2	$2^{3}-2^{2}=8-4=4$	\checkmark
3	$3^{3}-3^{2}=27-9=18$	\mathbf{x}
4	$4^{3}-4^{2}=64-16=48$	\mathbf{x}
5	$5^{3}-5^{2}=125-25=100$	\checkmark
6	$6^{3}-6^{2}=216-36=180$	\mathbf{x}
7	$7^{3}-7^{2}=343-49=294$	\mathbf{x}
8	$8^{3}-8^{2}=512-64=448$	\mathbf{x}
9	$9^{3}-9^{2}=729-81=648$	\mathbf{x}
10	$10^{3}-10^{2}=1000-100=900$	\checkmark

1; 2; 5; 10

Why these numbers?

If the number is x, then

$$
\begin{aligned}
& x^{3}-x^{2} \\
= & x^{2} \times x-x \\
= & x^{2}(x-1)
\end{aligned}
$$

x^{2} is a perfect square, so $x-1$ must also be a perfect square.
This means that x must be 1 more than a square number.
1 is 1 more than 0
2 is 1 more than 1
5 is 1 more than 4
10 is 1 more than 9
3. $1^{2}=1$
$2^{2}=4$
$3^{2}=9$
$4^{2}=16$
$5^{2}=25$
$6^{2}=36$
$\underline{\underline{7^{2}}=49}$
$8^{2}=64$
$\underline{\underline{9^{2}=81}}$
$10^{2}=100$
$11^{2}=121$

Sum of square numbers must end in 0 , so the last digit combinations could be:

- 1 and 9
- 4 and 6
- 5 and 5

Two pairs of square numbers with a sum of 130 :

- 9 \& $121(9+121=130)$
- 49 \& $81 \quad(49+81=130)$

4. $\left(1-\frac{1}{2}\right) \times\left(1-\frac{1}{3}\right) \times\left(1-\frac{1}{4}\right) \times\left(1-\frac{1}{5}\right) \times \ldots \times\left(1-\frac{1}{500}\right)$

$$
\begin{aligned}
& =\left(\frac{1}{2}\right) \times\left(\frac{2}{3}\right) \times\left(\frac{3}{4}\right) \times\left(\frac{4}{5}\right) \times \ldots \times\left(\frac{-499}{500}\right) \\
& =\frac{1}{500}
\end{aligned}
$$

5. Descending order: $\frac{14}{15} ; \frac{11}{12} ; \frac{9}{10}$

Explanation:

- the larger the denominator, the smaller the part of the whole

- $\frac{1}{15}<\frac{1}{12}<\frac{1}{10}$
- the smaller the part is that is removed, the bigger the part is that is left

Check: $\frac{14}{15} \times \frac{4}{4}=\frac{56}{60} ; \quad \frac{11}{12} \times \frac{5}{5}=\frac{55}{60} ; \quad \frac{9}{10} \times \frac{6}{6}=\frac{54}{60}$
6.

Number of hutches	9 rabbits per hutch with 1 spare empty hutch	7 rabbits per hutch with 1 extra rabbit left over	
2	$1 \times 9+0=9$	$2 \times 7+1=15$	\mathbf{x}
3	$2 \times 9+0=18$	$3 \times 7+1=22$	\mathbf{x}
4	$4 \times 9+0=27$	$4 \times 7+1=29$	\mathbf{x}
5	$4 \times 9+0=36$	$5 \times 7+1=36$	\checkmark

There are 5 rabbit hutches and 36 rabbits.

7. Using a table:

Mpho	Thapelo	Dumisani	Product	
5	1	10	$5 \times 1 \times 10=50$	\mathbf{x}
10	2	20	$10 \times 2 \times 20=400$	\checkmark

$10+2+20=32$
The sum of their ages is $\mathbf{3 2}$ years.

Using algebra:

Let Thapelo be x years old
Then Mpho is $5 x$ years old and Dumisani is $10 x$ years old.

$$
\begin{aligned}
x \times 5 x \times 10 x & =400 \\
\therefore 50 x^{3} & =400 \\
50 \times 8 & =400 \\
\therefore x^{3}=8 & =2^{3} \\
\therefore x & =2
\end{aligned}
$$

Thapelo is 2 years old, Mpho is 10 years old and Dumisani is 20 years old.
The sum of their ages is 32 years.
8. 20 m make up one length and one breadth.

Possible combinations:
$1 \& 19 ; 2 \& 18 ; 3 \& 17 ; 4 \& 16 ; 5 \& 15 ; 6 \& 14 ; 7 \& 13 ; 8 \& 12 ; 9 \& 11 ; 10 \& 10$
$1 \times 19=19$
$2 \times 18=36$
$3 \times 17=51$
$4 \times 16=64$
$5 \times 15=75$
$6 \times 14=84$

$7 \times 13=91$
$8 \times 12=96$
$9 \times 11=99$
$10 \times 10=100$

The chicken enclosure has a maximum area of $100 \mathrm{~m}^{2}$ when $A B C D$ is a square. The dimensions are 10 m by 10 m .
9. EG and FH are
symmetry lines of $A B C D$.
AEKH, BEKF, DGKH and CGKH are congruent (identical) and each of these rectangles is
 divided into 2 congruent triangles by their respective diagonals.
9.1 The area of $\triangle E B F=\frac{1}{8}$ of the area of $A B C D$

The probability that a randomly shot arrow lands on $\triangle E B F=\frac{1}{8}$.
9.2 unshaded area =shaded area

The probability that a randomly shot arrow lands on the unshaded area $=\frac{1}{2}$.
10.1

Fraction of total unshaded area

$=$ Fraction of area total area represented by (Area $\triangle \mathrm{PQM}+$ Area $\triangle \mathrm{MNT}+$ Area $\triangle \mathrm{QRN}$)
$=\frac{1}{4} \times \frac{2}{2}+\frac{1}{8}+\frac{1}{4} \times \frac{2}{2}$
$=\frac{2+1+2}{8}$
$=\frac{5}{8}$
The shaded area $=1-\frac{5}{8}=\frac{3}{8}$ of the total area
Shaded area : Unshaded area
$=\frac{3}{8}: \frac{5}{8}$
$=3: 5$
10.2 Area $\operatorname{PQRT}=10 \mathrm{~m} \times 16 \mathrm{~m}=160 \mathrm{~m}^{2}$
\therefore Area $\triangle \mathrm{MNQ}$

$$
\begin{aligned}
& =\frac{3}{8} \times \frac{160}{1} \\
& =60 \mathrm{~m}^{2}
\end{aligned}
$$

or

Area $\Delta \mathrm{PQM}+$ Area $\Delta \mathrm{MNT}+$ Area $\Delta \mathrm{QRN}$

$$
\begin{aligned}
& =\frac{1}{2} \times 10 \times 8+\frac{1}{2} \times 8 \times 5+\frac{1}{2} \times 16 \times 5 \\
& =40+20+40 \\
& =100 \mathrm{~m}^{2}
\end{aligned}
$$

Area PQRT
$=10 \mathrm{~m} \times 16 \mathrm{~m}$

$=160 \mathrm{~m}^{2}$

Area $\triangle \mathrm{MNQ}$

$$
\begin{aligned}
& =160 \mathrm{~m}^{2}-100 \mathrm{~m}^{2} \\
& =60 \mathrm{~m}^{2}
\end{aligned}
$$

