Hands on Grade 7 Problem Solving with TAS

- The sum of a square number and a cube number is equal to a square number. 1 List the natural numbers less than or equal to 10 that satisfy this condition.
- 2. The difference between a cube number and a square number is a square number. List the integers less than or equal to 10 that satisfy this condition.
- 3. Find two pairs of square numbers that have a sum of 130.
- 4. Calculate the value of the expression below:
 - $\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times\left(1-\frac{1}{4}\right)\times\left(1-\frac{1}{5}\right)\times\ldots\times\left(1-\frac{1}{500}\right)$
- Without doing any calculations, arrange the fractions $\frac{9}{10}$; $\frac{11}{12}$; 5. in descending order.
- 6. There are some rabbits and some rabbit hutches. If seven rabbits are put into each hutch, one

rabbit is left without a hutch.

If 9 rabbits are put into each hutch, one hutch is left empty.

How many rabbit hutches and how many rabbits are there?

7. Mpho is 5 times as old as Thapelo and half as old as Dumisani. The product of their ages is 400. Calculate the sum of their ages.

8. Bongani has 40 m of fencing and plans to build a rectangular enclosure for his chickens.
Determine the dimensions of the rectangle for which the chicken enclosure will have maximum area, given that the dimensions are natural numbers.

ABCD is a rectangle with E, F, G and H midpoints of the sides as shown.

An arrow is shot at random onto the rectangle.

What is the probability that the arrow strikes

9.1 Δ EBF?

10.

9.2 the unshaded area of the rectangle?

- 10.1 What is the ratio of the shaded area to the unshaded area?
- 10.2 Calculate the area of Δ MNQ in two different ways.

1.	$1^2 = 1$	$2^2 = 4$	$3^2 = 9$	$4^2 = 16$	$5^2 = 25$
	$6^2 = 36$	$7^2 = 49$	$8^2 = 64$	9 ² = 81	$10^2 = 100$

Numbers that end in 2, 3, 7 or 8 cannot be perfect squares.

	Numbers	Calculations		_			
$1^2 = 1$	1	$1^2 + 1^3 = 1 + 1 = 2$	x		2	5	7
$2^2 = 4$	2	$2^2 + 2^3 = 4 + 8 = 12$	х		2	2	8
$3^2 = 9$	3	$3^2 + 3^3 = 9 + 27 = 36$	✓		2	1	4
4 ² =16	4	$4^2 + 4^3 = 16 + 64 = 80$	x		2		7
$5^2 = 25$	5	$5^2 + 5^3 = 25 + 125 = 150$	x		2		3
$6^2 = 36$	6	$6^2 + 6^3 = 36 + 216 = 252$	x		2		1
$7^2 = 49$	7	$7^2 + 7^3 = 49 + 343 = 392$	x		3		
$8^2 = 64$	8	$8^2 + 8^3 = 64 + 512 = 576$	~		3		
9 ² = 81	9	$9^2 + 9^3 = 81 + 729 = 810$	x				
$10^2 = 100$	10	$10^2 + 10^3 = 100 + 1000 = 1100$	x				

Rule out 2, 12, 252, 392

- each of these numbers end in 2
- $80 = 16 \times 5$
- $150 = 10 \times 5$
- $810 = 81 \times 10$

 $1\,100 = 11 \times 100$

Continued on next page.

Copyright © The Answer Series: Photocopying of this material is illegal

Is 576 a square number?

6

8

4

2

6

8

9

3

1

- $20^2 = 400$
- 21^2 ends in a 1
- 22^2 ends in a 4
- 23^2 ends in a 9
- 24² ends in 6

Find the product of 24×24 :

 24×24

$$= (20+4) \times (20+4)$$
$$= 400+80+80+16$$
$$= 400+160+16$$
$$= 576$$

If you use the same number, there are two possible answers, 3 or 8.

(Go back to Page 1 to find the solutions in the table.)

If you used different numbers, then 1 and 2 must be used together as follows:

$$1^2 + 2^3 = 1 + 8 = 9$$

Why these numbers?

If the number is x, then

$$x^2 + x^3$$

$$= x^2 + x^2 \times x$$

$$= x^{2}(1+x)$$

 x^2 is a perfect square, so x+1 must also be a perfect square.

This means that *x* must be 1 less than a square number.

3 is 1 less than 4 and 8 is 1 less than 9.

2. A number than ends in 2, 3, 7 or 8 cannot be a perfect square.

Nι	ım	be
----	----	----

Calculations

1	$1^3 - 1^2 = 1 - 1 = 0$			
2	$2^3 - 2^2 = 8 - 4 = 4$			
3	$3^3 - 3^2 = 27 - 9 = 18$			
4	$4^3 - 4^2 = 64 - 16 = 48$	x		
5	$5^3 - 5^2 = 125 - 25 = 100$	✓		
6	$6^3 - 6^2 = 216 - 36 = 180$	x		
7	$7^3 - 7^2 = 343 - 49 = 294$	x		
8	$8^3 - 8^2 = 512 - 64 = 448$	x		
9	$9^3 - 9^2 = 729 - 81 = 648$	x		
10	$10^3 - 10^2 = 1000 - 100 = 900$	✓		

1; 2; 5; 10

Why these numbers?

If the number is x, then

$$x^3-x^2$$

$$= x^2 \times x - x$$

$$=x^{2}(x-1)$$

 x^2 is a perfect square, so x-1 must also be a perfect square.

This means that *x* must be 1 more than a square number.

1 is 1 more than 0

2 is 1 more than 1

5 is 1 more than 4

10 is 1 more than 9

3. $1^2 = 1$ $2^2 = 4$ $3^2 = 9$ $4^2 = 16$ $5^2 = 25$ $6^2 = 36$ $\underline{7^2 = 49}$ $8^2 = 64$ $\underline{9^2 = 81}$ $10^2 = 100$ $\underline{11^2 = 121}$

Sum of square numbers must end in 0, so the last digit combinations could be:

- 1 and 9
- 4 and 6
- 5 and 5

Two pairs of square numbers with a sum of 130 :

- **9** & **121** (9 + 121 = 130)
- **49** & **81** (49 + 81 = 130)

4.
$$\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times\left(1-\frac{1}{4}\right)\times\left(1-\frac{1}{5}\right)\times\ldots\times\left(1-\frac{1}{500}\right)$$
$$=\left(\frac{1}{2}\right)\times\left(\frac{2}{3}\right)\times\left(\frac{3}{4}\right)\times\left(\frac{4}{5}\right)\times\ldots\times\left(\frac{499}{500}\right)$$
$$=\frac{1}{500}$$

5. Descending order: $\frac{14}{15}$; $\frac{11}{12}$; $\frac{9}{10}$

Explanation:

• the larger the denominator, the smaller the part of the whole

- $\frac{1}{15} < \frac{1}{12} < \frac{1}{10}$
- the smaller the part is that is removed, the bigger the part is that is left

Check: $\frac{14}{15} \times \frac{4}{4} = \frac{56}{60}$; $\frac{11}{12} \times \frac{5}{5} = \frac{55}{60}$; $\frac{9}{10} \times \frac{6}{6} = \frac{54}{60}$

6.

Number of hutches	9 rabbits per hutch with 1 spare empty hutch	7 rabbits per hutch with 1 extra rabbit left over	
2	$1 \times 9 + 0 = 9$	$2 \times 7 + 1 = 15$	x
3	$2 \times 9 + 0 = 18$	$3 \times 7 + 1 = 22$	x
4	$3 \times 9 + 0 = 27$	$4 \times 7 + 1 = 29$	x
5	$4 \times 9 + 0 = 36$	$5 \times 7 + 1 = 36$	~

There are 5 rabbit hutches and 36 rabbits.

7. Using a table:

Mpho	Thapelo	Dumisani	Product	
5	1	10	$5 \times 1 \times 10 = 50$	x
10	2	20	$10 \times 2 \times 20 = 400$	~

10 + 2 + 20 = 32

The sum of their ages is 32 years.

Using algebra:

Let Thapelo be x years old

Then Mpho is 5*x* years old and Dumisani is 10*x* years old.

$$x \times 5x \times 10x = 400$$
$$\therefore 50 \boxed{x^3} = 400$$
$$50 \times \boxed{8} = 400$$
$$\therefore x^3 = 8 = 2^3$$

 $\therefore x = 2$

Thapelo is 2 years old, Mpho is 10 years old and Dumisani is 20 years old.

The sum of their ages is 32 years.

8. 20 m make up one length and one breadth.

Possible combinations:

 $1 \And 19 ; 2 \And 18 ; 3 \And 17 ; 4 \And 16 ; 5 \And 15 ; 6 \And 14 ; 7 \And 13 ; 8 \And 12 ; 9 \And 11 ; 10 \And 10$

 $1 \times 19 = 19$ $2 \times 18 = 36$ $3 \times 17 = 51$ $4 \times 16 = 64$ $5 \times 15 = 75$ $6 \times 14 = 84$ $7 \times 13 = 91$ $8 \times 12 = 96$ $9 \times 11 = 99$ $10 \times 10 = 100$

The chicken enclosure has a maximum area of 100 m^2 when ABCD is a square. The dimensions are 10 m by 10 m.

9. EG and FH are А D Η symmetry lines of ABCD. Κ Ε AEKH, BEKF, DGKH and CGKH G are congruent (identical) and each of these rectangles is В С F divided into 2 congruent triangles by their respective diagonals. The area of \triangle EBF $=\frac{1}{8}$ of the area of ABCD 9.1 The probability that a randomly shot arrow lands on $\Delta EBF = \frac{1}{8}$. 9.2 unshaded area = shaded area The probability that a randomly shot arrow lands on the unshaded area $=\frac{1}{2}$.

Fraction of total unshaded area

= Fraction of area total area represented by (Area Δ PQM + Area Δ MNT + Area Δ QRN)

$$=\frac{1}{4} \times \frac{2}{2} + \frac{1}{8} + \frac{1}{4} \times \frac{2}{2}$$
$$=\frac{2+1+2}{8}$$
$$=\frac{5}{8}$$

The shaded area $=1-\frac{5}{8}=\frac{3}{8}$ of the total area

Shaded area : Unshaded area

 $=\frac{3}{8}:\frac{5}{8}$ =3:5

10.2 Area PQRT = 10 m \times 16 m = 160 m²

 \therefore Area Δ MNQ

$$=\frac{3}{8}\times\frac{160}{1}$$
$$=60 \text{ m}^2$$

or

Area Δ PQM + Area Δ MNT + Area Δ QRN

 $=\frac{1}{2} \times 10 \times 8 + \frac{1}{2} \times 8 \times 5 + \frac{1}{2} \times 16 \times 5$ = 40 + 20 + 40 $= 100 \text{ m}^2$ Area PQRT $= 10 \text{ m} \times 16 \text{ m}$ $= 160 \text{ m}^2$ Area Δ MNQ $= 160 \text{ m}^2 - 100 \text{ m}^2$

 $= 60 \text{ m}^2$

