MATHS LITERACY TEACHER SUPPORT WORKSHOP

MEASUREMENT - Tips \& Tricks

BASELINE ASSESSMENT

Baseline Assessment for Measurement

A school needs to determine how many workers it needs to host a carnival with 15 different rides and an estimated attendance of 3250 people.

1. Determine how many workers are needed per day. Use the formula:

Workers per day $=$ number of rides $\times 2+$ estimated number of attendees 8

The workers need to wipe down the rides with, on average, 5ℓ of disinfectant per ride.
2. Determine how many bottles of disinfectant will be needed, if they are sold in 12ℓ tins.

Answers

BASELINE ASSESSMENT

1. Workers per day $=$ number of rides $\times 2+\frac{\text { estimated number of attendees }}{8}$

$$
\begin{aligned}
& =15 \times 2+\frac{3250}{8} \\
& =30+406,25 \\
& =436,25 \text { workers }
\end{aligned}
$$

$$
\approx 437 \text { workers Rounding up }
$$

2. \quad Total disinfectant $=5 \ell \times 15$ rides \quad Rates

$$
=75 \ell
$$

Number of bottles $=75 \ell \div 12 \ell$ bottles

Operations on numbers \& calculator skills

$$
=6,25 \text { bottles }
$$

≈ 7 bottles

HANDS ON EXPLORATION - PART 1

DIMENSIONS

Dimensions

Choose 2 rectangular containers and 2 cylindrical containers. Using your ruler, determine the following:

RECTANGULAR CONTANERS

CYLINDRICAL CONTAINERS

1. Container \mathbf{A} : Measure the dimensions in cm : Length:
Breadth:
Height:
2. Container B: Measure the dimensions in cm :

Length:
Breadth:
Height:
3. Which rectangular container is the deepest and by how much?
\qquad
\qquad
3. Which cylindrical container is the widest and by how much?
\qquad

1. Container \mathbf{A} : Measure the dimensions in mm :

Radius:
Diameter:
Height:
2. Container B: Measure the dimensions in mm : Radius:
Diameter:
Height:
\qquad

HANDS ON EXPLORATION - PART 2

CONVERSIONS

Conversions

Using the same 2 rectangular \& 2 cylindrical containers from Part 1, convert:

RECTANGULAR CONTAINERS

4. Container \mathbf{A} : Convert your measurements from Part 1 from cm to the following:
Length:
$\mathrm{cm}=$
mm
Breadth:
$\mathrm{cm}=$
.m
Height:
$\mathrm{cm}=$
.km
5. Container B: Convert your measurements from Part 1
from cm to the following:
Length:
$\mathrm{cm}=$
mm
Breadth:
$\mathrm{cm}=$
.m
Height:
cm $=$
km

CYLINDRICAL CONTAINERS

4. Container A: Convert your measurements from Part 1 from mm to the following:

Radius:	
Diameter:	
Height:	

5. Container B: Convert your measurements from Part 1 from mm to the following:
Radius:
$\mathrm{mm}=$
cm
Diameter: $\quad \mathrm{mm}=$m
Height: $\mathrm{mm}=$ km

HANDS ON EXPLORATION

PART 3

Costing \& Spread Rate

Using the same containers from Part $1 \& 2$, determine the following:

RECTANGULAR CONTAINERS

6. If you put the smallest container into the larger container, determine the empty space between the two containers A and B in cm^{3}.
Volume $=$ length \times breadth \times height
...
\qquad
\qquad
7. If you had to fill the empty space between the two containers with oil, calculate the total cost of oil if it costs R65 per liter and is sold only in 2 liter bottles.

CYLINDRICAL CONTAINERS

6. Calculate the TSA (excluding the lid) in cm^{2}. Formula of a cylindrical container with a closed lid $=$ $\left(2 \times \pi \times\right.$ radius $\left.^{2}\right)+(2 \times \pi \times$ radius \times height $)$; where $\pi=3,142$
\qquad
\qquad
7. If you had to paint the container (excluding the lid), determine the cost of the paint if the paint is sold for $\mathrm{R} 49,99$ per 500 ml bottle and the spread rate of the paint is $800 \mathrm{~cm}^{2} / \ell$.

CONSOLIDATION - PART 1

Inner vs Outer Dimensions

Aldon is making a circular speed limit sign sticker, which measures 42 cm in diameter. The sticker will then be stuck in the centre of a circular metal backing, with a 6 cm space between the edge of the sticker and the edge of the metal backing, as shown below:

1. Determine the radius of the metal backing.
\qquad
\qquad
\qquad

Rebecca would like to install a square pool, with a depth of $1,7 \mathrm{~m}$, in her square garden which measures $8 \mathrm{~m} \times 8 \mathrm{~m}$. She needs to have a $2,5 \mathrm{~m}$ paving all around the pool, as shown below:

1. Determine the dimensions of the pool.
\qquad
\qquad
\qquad

CONSOLIDATION - PART 2

Area, Volume and Conversions

From Part 1: Circular speed limit sign stuck in the centre of a circular metal backing with a spacing of 6 cm between the sticker and edge of the metal:

2. Determine the area of the speed limit sticker in cm^{2}, using the formula: Area $=\pi \times$ (radius) ${ }^{2}$; where $\pi=3,142$
3. Convert the area into m^{2}.
\qquad
\qquad

From Part 1: Square pool, with a depth of $1,7 \mathrm{~m}$; in a square garden; with a $2,5 \mathrm{~m}$ paving all around the pool:

2. Determine the volume of the pool in cm^{3}, using the formula: Volume $=$ length \times breadth \times depth
3. Convert the volume into cm^{3}.

CONSOLIDATION
 PART 3

IRREGULAR SHAPES \& COSTING

Irregular Shapes

From Part 2: Circular speed limit sign stuck in the centre of a circular metal backing with a spacing of 6 cm between the sticker and edge of the metal:

4. Determine the area of the exposed metal backing (dotted area) that is NOT covered by the sticker, using the formula:
Area $=\pi \times$ (radius) ${ }^{2}$; where $\pi=3,142$
\qquad
\qquad
\qquad

From Part 2: Square pool, with a depth of $1,7 \mathrm{~m}$; in a square garden; with a $2,5 \mathrm{~m}$ paving all around the pool:

4. Determine the area of the paving (striped area) around the pool, using the formula:
Area $=$ length \times breadth
\qquad
\qquad

FORMULAE

Worked Examples - Reverse calculations

A preschooler was told to make a basic figure of a "man" by cutting and pasting a triangle (for the hat), circle (for the face) and rectangle (for the body), as shown alongside:

1. Determine the base of the triangle, given that the perimeter of the triangle is 25 cm . Use the formula:
Perimeter $=$ side $_{1}+$ side $_{2}+$ base 2
Perimeter $=$ side $_{1}+$ side $_{2}+$ base

$$
\begin{aligned}
25 & =9+6+\text { base } & & \ldots . \text { substitute } \\
25 & =15+\text { base } & & \ldots \text { simplify first! } \\
25-15 & =\text { base } & & \ldots \text { opposite operation } \\
10 \mathrm{~cm} & =\text { base } & & \ldots \text { simplify } \& \text { add units }
\end{aligned}
$$

FORMULAE

Worked Examples - Reverse calculations

A preschooler was told to make a basic figure of a "man" by cutting and pasting a triangle (for the hat), circle (for the face) and rectangle (for the body), as shown alongside:
2. Calculate the length of the man's body, if the area of the rectangular body is $96 \mathrm{~cm}^{2}$. Use the formula:

Area $=$ length \times breadth
Area $=$ length \times breadth

$$
\begin{aligned}
96 & =\text { length } \times 8 & & \text {... substitute } \\
96 \div 8 & =\text { length } & & \ldots \text { opposite operation } \\
12 \mathrm{~cm} & =\text { length } & & \ldots \text { simplify \& add units }
\end{aligned}
$$

FORMULAE

Worked Examples - Reverse calculations

A preschooler was told to make a basic figure of a "man" by cutting and pasting a triangle (for the hat), circle (for the face) and rectangle (for the body), as shown alongside:
3. Determine the radius of the man's face, if the area is $78,55 \mathrm{~cm}^{2}$. Use the formula:

Area $=\pi \times$ radius 2; where $\pi=3,142$

Area $=\pi \times$ radius 2

$$
\begin{aligned}
78,55 & =3,142 \times \text { radius }^{2} \\
78,55 \div 3,142 & =\text { radius }^{2} \\
25 & =\text { radius }^{2} \\
\sqrt{\mathbf{2 5}} & =\text { radius } \\
5 \mathrm{~cm} & =\text { radius }
\end{aligned}
$$

substitute incl. π
... opposite operation
.. simplify
.. opposite operation
.. simplify \& add units
\qquad

$$
\begin{aligned}
& 3 x^{2} \leftrightarrow \sqrt{x} \\
& \text { Square } \leftrightarrow \text { Square-root }
\end{aligned}
$$

Exam Practice!

$\begin{array}{lcc}\text { Mathematical LiteracyP2 } & \begin{array}{c}8 \\ \text { NSC }\end{array} & \text { DBENovember 2018 }\end{array}$
3.2

Use the information and picture above to answer the questions that follow
3.2.1 Determine the maximum height (in cm) of the water in the bucket if the Determine the maximum height $(\mathrm{in} \mathrm{cm}$.
outside diameter of the bucket is $31,2 \mathrm{~cm}$.

You may use the formula:
Volume of a cylinder $=\pi \times(\text { radius })^{2} \times$ height
where $\pi=3,142$ and $1 \ell=1000 \mathrm{~cm}^{3}$
Buckets are placed on the pallet, as shown in the diagram above.
(a) Calculate the unused area (in cm^{2}) of the rectangular floor of the solid pallet.
You may use the formula:
Area of a circle $=\pi \times(\text { radius })^{2}$, where $\pi=3,142$

[^0]
Answers

Approaching Irregular Shapes

(1) Break down shapes

(2) Convert dimensions to required units

"Turtle strokes"

IRREGULAR SHAPES \& COSTING

(3) or - shapes

Adding shapes e.g. house OR
Subtracting shapes e.g. spaces between

(4) Select appropriate formula

Understanding formula NB!
(5) Making sense of answer

Costing

IRREGULAR SHAPES \& COSTING

Spread Rates \& Costing

IRREGULAR SHAPES \& COSTING

Painting a bedroom with TSA $=147 \mathrm{~m}^{2}$

Spread rate of paint $=20 \mathrm{~m}^{2} / \mathrm{l}$

Paint needed $(\ell)=147 \mathrm{~m}^{2} \div 20 \mathrm{~m}^{2} / \ell$

$$
=7,35 \ell
$$

Tins come in 2ℓ @ R199 per tin

Number of tins $=7,35 \ell \div 2 \ell$
$=3,675$
≈ 4 tins
\therefore Cost $\mathrm{m}=4$ tins \times R199 per tin = R796

Let's Practice!

IRREGULAR SHAPES \& COSTING

EXERCISE 2

Answers on page A27

Use the formulae on p . 150 to answer the following questions:

1. Mr Handyman wants to build a kennel for his puppy, Canin. The measurements for the kennel are given alongside.
1.1 Determine the dimensions of the large plywood sheet that Mr Handyman will need in order to cut out all the panels shown on the diagram? Give your answer in both mm and in m .
1.2 Calculate the area of the side panels in m^{2}.
1.3 If the height of the kennel is 900 mm and the height of the side panel is 500 mm , find the length of H on the diagram.
1.4 Calculate the area of the back panel of the kennel in m^{2}.
1.5 Calculate the area of the door (in m^{2}) that needs to be cut out from the front panel.

HINT: The door is made up of a rectangle and a semicircle.
1.6 Calculate the area of the front panel in m^{2} (the front panel is the panel with the door).
1.7 Calculate the total area of the kennel in m^{2} (the shaded area on the drawing).
1.8 Calculate the area of the sheet of plywood that will not be used (the unshaded area on the drawing).

Answers

EXERCISE 2

1.5 Door $=$ rectangle $+\frac{1}{2}$ circle
$=(\ell \times b)+\left(\frac{1}{2} \cdot \pi r^{2}\right)$
$=(0,30 \times 0,25)+\left(\frac{1}{2} \times 3,142 \times 0,15^{2}\right)$
$=0,075+0,0353 \quad 250 \mathrm{~mm}=0,25 \mathrm{~m}$
$=0,11 \mathrm{~m}^{2}$
$=0,15 \mathrm{~m}$
1.6 Area front panel $=$ area back panel - area door

$$
=0,56-0,11=0,45 \mathrm{~m}^{2}
$$

1.7 TSA $=$ front + back + side panels

$$
=0,45+0,56+1,2=2,21 \mathrm{~m}^{2}
$$

1.8 Unshaded area $=$ (total area of plywood - used area)
$=(1,2 \times 2,4)-2,21$
$=2,88-2,21=0,67 \mathrm{~m}^{2}$

Conversions and Calculations involving Units of Time

- General Method:

BIG unit down to a SMALLER unit \rightarrow MULTIPLY by the conversion factor
SMALL unit up to a BIGGER unit \rightarrow DIVIDE by the conversion factor

- Conversion diagram:

days \rightarrow hours \rightarrow minutes \rightarrow seconds | big to small $: \times$ by |
| :---: |
| conversion factor |

This diagram should be

committed to memory!
seconds \rightarrow minutes \rightarrow hours \rightarrow days
smallo to $\begin{aligned} & . . \div \text { by } \\ & \text { conversion factor }\end{aligned}$
Conversion tables

days to h	\times by 24	s to min	\div by 60
h to min	\times by 60	min to h	\div by 60
min to s	\times by 60	h to days	\div by 24

[^1]
Conversions

Pop Quiz!

1. How many days in a year?
2. How many minutes in an hour?
3. How many hours in a day?
4. How many seconds in a minute?
5. How many months in a year?
6. How many days in May?
7. How many working days in a week?

Let's Practice CHALLENGE!

Convert 557799 seconds to days, hours, minutes and seconds.

Answer

$557799 \mathrm{~s}=557799 \div 60=9296,65 \mathrm{~min}$
$\therefore 9296,65 \mathrm{~min}=9296,65 \div 60 \mathrm{~s}$
$=154,9441667 \mathrm{~h}$
$\therefore 154,9441667 \mathrm{~h}=154,9441667 \div 24$
$=6,456006944$ days
\therefore 6,456006944 days
$=6$ days $+0,456006944$ days
$=6$ days $+0,456006944$ days $\times 24 \mathrm{~h}$
$=6$ days $+10,94416667 \mathrm{~h}$

- 10,94416667 h
$=10 \mathrm{~h}+0,94416667 \mathrm{~h}$
$=10 h+0,94416667 \times 60 \mathrm{~min}$
$=10 \mathrm{~h}+56,65 \mathrm{~min}$
-56,65 min
$=56 \mathrm{~min}+0,65 \mathrm{~min} \times 60 \mathrm{~s}$
$=56 \mathrm{~min}+39 \mathrm{~s}$

557799 s
$=6$ days; $10 \mathrm{~h} ; 56 \mathrm{~min}$ and 39 s

Let's Practice!

4. The table below shows the running times of two different athletes during the 2015 Comrades Marathon at various points along the route. One of the athletes won the marathon and the other came second

Athlete A			Athlete B		
Place on the route	Distance run (km)	Total running time (h, min, s)	Place on the route	Distance run (km)	Total running time (h, min, s)
Lion Park	15,9	01:08:07	Lion Park	15,9	01:05:26
Camperdown	26,9	01:55:19	Camperdown	26,9	01:50:39
Halfway	45	03:13:20	Halfway	45	03:05:14
Pinetown	68,9	05:01:32	Pinetown	68,9	04:54:45
Mayville	82,3	06:03:07	Mayville	82,3	06:02:45
Finish	89,3	06:36:03	Finish	89,3	06:37:30

4.1 Who out of the two athletes came in first?
4.2 How far is it from Pinetown to the Finish?
4.3 How long (in hours, minutes and seconds) did it take Athlete A to run from Lion Park to Halfway?
4.4 How long (in hours, minutes and seconds) did it take Athlete B to run from Camperdown to Mayville?
4.5 Approximately where in the race did Athlete A overtake Athlete B ? Explain your answer.
4.2 Distance to Pinetown $=68,9 \mathrm{~km}$ Distance to Finish $=89,3 \mathrm{~km}$

Distance from Pinetown to Finish
$=89,3 \mathrm{~km}-68,9 \mathrm{~km}$
$=20,4 \mathrm{~km}$
4.3 Running time at Lion Park $=1 \mathrm{~h} 8 \mathrm{~min} 7 \mathrm{~s}$ Running time at Half Way $=3 \mathrm{~h} 13 \mathrm{~min} 20 \mathrm{~s}$
$\therefore 3 \mathrm{~h} ; 13 \mathrm{~min} ; 20 \mathrm{~s}$
$\frac{-1 \mathrm{~h}: 8 \mathrm{~min}: 7 \mathrm{~s}}{2 \mathrm{~h}: 5 \mathrm{~min} \cdot 13 \mathrm{~s}}$
4.4 Running time at Camperdown $=1 \mathrm{~h} 50 \mathrm{~min} 39 \mathrm{~s}$ Running time Mayville $=6 \mathrm{~h} 2 \mathrm{~min} 45 \mathrm{~s}$
$5 \quad 60+2=62 \mathrm{~min}$
$\therefore 5 \mathrm{~h} ; 2 \mathrm{~min} ; 45 \mathrm{~s}$
$-1 \mathrm{~h}: 50 \mathrm{~min}: 39 \mathrm{~s}$
$4 \mathrm{~h} ; 12 \mathrm{~min} ; 6 \mathrm{~s}$
4.5 Between Mayville and the Finish, i.e. Runner B came through Mayville in a quicker time than Runner A, but Runner A then finished the race before runner B. So Runner A passed Runner B somewhere between Mayville and the Finish.

Let's Practice!

5. Pete is an avid leisure fisherman and keeps an eye on the tide timetable Study the Simon's Town Tide Timetable for a part of November 2014 below
in order to answer the following questions: order to answer the following questions:
1 Write down the solar times for 3 November in 12 -hour format
Calculate the time difference between the Spring Tide and Lowest Tide on 6 November.
On which days should Pete go out fishing? Give a reason for your answe
5.4 How much later is the first low tide on 4 November, as opposed to the firs low tide on 5 November?
5.5 Pete is only able to go out fishing on Saturday, 8 November, from 2:15 pm $5: 00 \mathrm{pm}$. What percentage of his fishing time out will be considered as the 'bes fishing time?

SIMON'S TOWN TIDE TABL

Sunday	Monday	tuessay	Wednessay	Thussay	Friday	saturday
			-METER ling days hing days Theory the best fishing leisure fisherma times during nigh t been listed. Tide: $14: 43(1,92 \mathrm{~m})$ t Tide: 21:02 (0,23 m)			
3^{2}	3	4	9^{5}	6		
solar						
Sunise 0 (544	Sunise 0 (13,	Sunisi 0.4 .2	Sunis 0.5.4.1	Sunise 0540,	Sunis 0.50	Sunise 53.3
Lunar	lunar	lunar	Lunar	lunar	LUNAR	UUNAR
Mmonsol 0.303			Moorss 0.438	Mosans ${ }^{\text {M }}$	Coramagio 3	Oveneas 012
(tios TIMES		OVider TMM	Ovide TIMEs	TIDE TIMES	MİR TMES	Tiol
Lomy	High tide 01	High ide 1	High	Highter	Highto	High itio 0.4 .4
				-		Hex
BEST FISHING	BEST FISHING	BEST FISHING	BEST FISHING	BEST FIISHING	BEST FISHING	BEST FISHING
. 1				$\stackrel{\circ}{ }$		
12:05 $0^{1013: 07}$				19161515		

Answers

5.1 Sunrise (05:43) $\rightarrow 5.43 \mathrm{am}$ Sunset (19:16) $\rightarrow 7.16 \mathrm{pm}$
5.2 Lowest tide: 2イ: 62

Spring tide: $\frac{-14: 43}{6.19}$
6 hours 19 minutes
5.3 3-8 November as the 'Fish-O-Meter' indicates these are the 'Best fishing days'.
5.4 First low tide on 5 November

07:55 First low tide on 4 November
$-\mathbf{- 0 7 : 1 1}$
00:44
44 min later
5.5 Fishing Time out:

- $2.15 \mathrm{pm}-5.00 \mathrm{pm}$ 1660
17:00
14:15
2:45 $\therefore 2 \mathrm{~h} 45 \mathrm{~min}$ fishing time out
\downarrow Best fishing time: 14:24-15:26
. 15:26
$-14: 24$
1:02 $\quad \therefore 1 \mathrm{~h} 2 \mathrm{~min}$ best fishing time
$\Rightarrow \%=\frac{\text { best fishing time }}{\text { fishing time out }} \times 100 \%$
$=\frac{1 \mathrm{~h} 2 \mathrm{~min}}{2 \mathrm{~h} 45 \mathrm{~min}} \times 100 \%$
$=\frac{62 \mathrm{~min}}{165 \mathrm{~min}} \times 100 \%$
= 37.58%

$$
\begin{gathered}
1 \mathrm{~h} 2 \mathrm{~min} \\
=60+2=62 \mathrm{~min} \\
2 \mathrm{~h} 45 \mathrm{~min} \\
=120+45=165 \mathrm{~min}
\end{gathered}
$$

[^0]: (b) Determine lenght \mathbf{C}, as shown in the diagram above.

[^1]: NB: You are also expected to know the following: 1 year $=365$ days $\quad 1$ year $= \pm 52$ weeks 1 month $= \pm 4$ weeks $\Rightarrow 1$ week $=7$ days

