Gr 10, Gr 11 \& Gr 12 Mathematics

EXEMPLAR PAPER 1s

(memos follow)

GRADE 10 EXEMPLAR PAPER 1

Clearly show ALL calculations, diagrams, graphs, etc. that you have used in determining your answers.

> Answers only will NOT necessarily be awarded full marks.

You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.

If necessary, round off answers to
TWO decimal places, unless stated otherwise.

- ALGEBRA [32]

QUESTION 1

1.1 Simplify the following expressions fully:

$$
\text { 1.1.1 } \quad(m-2 n)\left(m^{2}-6 m n-n^{2}\right)
$$

1.1.2 $\frac{x^{3}+1}{x^{2}-x+1}-\frac{4 x^{2}-3 x-1}{4 x+1}$
1.2 Factorise the following expressions fully:

$$
\begin{equation*}
\text { 1.2.1 } 6 x^{2}-7 x-20 \tag{2}
\end{equation*}
$$

1.2.2 $a^{2}+a-2 a b-2 b$
1.3 Determine, without the use of a calculator, between which two consecutive integers $\sqrt{51}$ lies.
(2)
1.4 Prove that $0, \dot{2} \dot{4} \dot{5}$ is rational.
(4) [19]

QUESTION 2

2.1 Determine, without the use of a calculator, the value of x in each of the following:
2.1.1 $x^{2}-4 x=21$
2.1.2 $96=3 x^{\frac{5}{4}}$
2.1.3 $\mathrm{R}=\frac{2 \sqrt{x}}{3 \mathrm{~S}}$
2.2 Solve for p and q simultaneously if:

$$
\begin{array}{r}
6 q+7 p=3 \\
2 q+p=5 \tag{5}
\end{array}
$$

- NUMBERS \& NUMBER PATTERNS [11] QUESTION 3
$3.13 x+1 ; 2 x ; 3 x-7 \ldots$. are the first three terms of a linear number pattern.
3.1.1 If the value of x is three, write down the FIRST THREE terms.
3.1.2 Determine the formula for T_{n}, the general term of the sequence.
3.1.3 Which term in the sequence is the first to be less than -31 ?
3.2 The multiples of three form the number pattern: 3; 6; 9; 12; .

Determine the $13^{\text {th }}$ number in this pattern that is even.
(3) [11]

- FINANCE \& GROWTH [14]

QUESTION 4

4.1 Thando has R4 500 in his savings account. The bank pays him a compound interest rate of $4,25 \%$ p.a. Calculate the amount Thando will receive if he decides to withdraw the money after 30 months.
4.2 The following advertisement appeared with regard to buying a bicycle on a hire-purchase agreement loan:

Purchase price	R5 999
Required deposit	R600
Loan term	Only 18 months, at 8\% p.a. simple interest

4.2.1 Calculate the monthly amount that a person has to budget for in order to pay for the bicycle.
4.2.2 How much interest does one have to pay over the full term of the loan?
4.3 The following information is given:

$$
\begin{aligned}
1 \text { ounce } & =28,35 \mathrm{~g} \\
\$ 1 & =\mathrm{R} 8,79
\end{aligned}
$$

Calculate the rand value of a 1 kg gold bar, if 1 ounce of gold is worth $\$ 978,34$.

Gr 10 Maths National Exemplar Paper 1

- PROBABILITY [13]

QUESTION 5

5.1 What expression BEST represents the shaded area of the following Venn diagrams?
5.1.1

5.1.2

5.2 State which of the following sets of events is mutually exclusive:

A Event 1: The learners in Grade 10 in the swimming team
Event 2: The learners in Grade 10 in the debating team

B Event 1: The learners in Grade 8
Event 2: The learners in Grade 12

C Event 1: The learners who take Mathematics in Grade 10

Event 2: The learners who take Physical Sciences in Grade 10
5.3 In a class of 40 learners the following information is TRUE:

- 7 learners are left-handed
- 18 learners play soccer

- 4 learners play soccer and are left-handed
- All 40 learners are either right-handed or left-handed

Let L be the set of all left-handed people and S be the set of all learners who play soccer.
5.3.1 How many learners in the class are right-handed and do NOT play soccer?
5.3.2 Draw a Venn diagram to represent the above information.
5.3.3 Determine the probability that a learner is:
(a) left-handed or plays soccer
(b) right-handed and plays soccer
(2) $[13]$

- FUNCTIONS \& GRAPHS [30]

QUESTION 6

Given: $\mathrm{f}(x)=\frac{3}{x}+1$ and $\mathrm{g}(x)=-2 x-4$
6.1 Sketch the graphs of f and g on the same set of axes.
6.2 Write down the equations of the asymptotes of f.
6.3 Write down the domain of f.
6.4 Solve for x if $\mathrm{f}(x)=\mathrm{g}(x)$.
6.5 Determine the values of x for which $-1 \leq \mathrm{g}(x)<3$
6.6 Determine the y-intercept of k if $\mathrm{k}(x)=2 \mathrm{~g}(x)$
6.7 Write down the coordinates of the x - and y -intercepts of h if h is the graph of g reflected about the y-axis.
(2) [20]

QUESTION 7

The graph of $\mathrm{f}(x)=\mathrm{a} x^{2}+\mathrm{q}$ is sketched below. Points $A(2 ; 0)$ and $B(-3 ; 2,5)$ lie on the graph of f. Points A and C are x-intercepts of f .

7.1 Write down the coordinates of C .
7.2 Determine the equation of f .
7.3 Write down the range of f.
7.4 Write down the range of h, where $\mathrm{h}(x)=-\mathrm{f}(x)-2$.
7.5 Determine the equation of an exponential function, $\mathrm{g}(x)=\mathrm{b}^{x}+\mathrm{q}$, with range $\mathrm{y}>-4$ and which passes through the point A.

TOTAL: 100

We trust that working through these exam papers and following our detailed answers and comments will help you prepare thoroughly for your final exam.

The Answer Series Maths study guides offer a key to exam success. In particular, Gr 10 Maths 3 in 1 provides superb foundation in the major topics in Senior Maths.

GRADE 11 EXEMPLAR PAPER 1

You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.

If necessary, round off answers to TWO decimal places, unless stated otherwise.

- ALGEBRA AND EQUATIONS AND INEQUALITIES [47]

QUESTION 1

1.1 Solve for x :

$$
\begin{array}{ll}
\text { 1.1.1 } & (2 x-1)(x+5)=0 \\
\text { 1.1.2 } & 2 x^{2}-4 x+1=0 \quad \text { (Leave your answer } \\
\text { in simplest surd form.) } \tag{3}
\end{array}
$$

1.2 Simplify, without the use of a calculator, the following expressions fully:

$$
\begin{array}{ll}
1.2 .1 & 125^{\frac{2}{3}} \tag{2}\\
1.2 .2 & (3 \sqrt{2}-12)(2 \sqrt{2}+1)
\end{array}
$$(3)

1.3 Given: $\frac{x^{2}-x-6}{3 x-9}$
1.3.1 For which value(s) of x will the expression be undefined?
1.3.2 Simplify the expression fully.

Algebra includes

exponents \& surds

QUESTION 2

2.1 Given: $(x+2)(x-3)<-3 x+2$
2.1.1 Solve for x if: $(x+2)(x-3)<-3 x+2$
2.1.2 Hence or otherwise, determine the sum of all the integers satisfying the inequality $x^{2}+2 x-8<0$.
2.2 Given: $\frac{4^{x-1}+4^{x+1}}{17.12^{x}}$
2.2.1 Simplify the expression fully.
2.2.2 If $3^{-x}=4 \mathrm{t}$, express $\frac{4^{x-1}+4^{x+1}}{17.12^{x}}$ in terms of t .
2.3 Solve for x and y from the given equations:
$3^{y}=81^{x} \quad$ and $\quad y=x^{2}-6 x+9$

QUESTION 3

3.1 The solution to a quadratic equation is

$$
x=\frac{3 \pm \sqrt{4-8 p}}{4} \text { where } \mathrm{p} \in \mathrm{Q} .
$$

Determine the value(s) of p such that:
3.1.1 The roots of the equation are equal.
3.1.2 The roots of the equation are non-real.
(2)
3.2 Given: $\sqrt{5-x}=x+1$
3.2.1 Without solving the equation, show that the solution to the above equation lies in the interval $-1 \leq x \leq 5$.
3.2.2 Solve the equation.
3.2.3 Without any further calculations, solve the equation $-\sqrt{5-x}=x+1$.

- FINANCE, GROWTH AND DECAY [18]

QUESTION 4

4.1 Melissa has just bought her first car. She paid R145 000 for it. The car's value depreciates on the straight-line method at a rate of 17% per annum. Calculate the value of Melissa's car 5 years after she bought it.
4.2 An investment earns interest at a rate of 8% per annum compounded quarterly.
4.2.1 At what rate is interest earned each quarter of the year?
4.2.2 Calculate the effective annual interest rate on this investment.
4.3 R14 000 is invested in an account.

The account earns interest at a rate of 9% per annum compounded semi-annually for the first 18 months and thereafter $7,5 \%$ per annum compounded monthly.

How much money will be in the account exactly 5 years after the initial deposit?

Gr 11 Maths National Exemplar Paper 1

QUESTION 5

The graphs below represent the growth of two investments, one belonging to Dumisani and one belonging to Astin. Both investments earn interest annually (only).

5.1 What is the value of both initial investments?
5.2 Does Dumisani's investment earn simple or compound interest?
5.3 Determine Dumisani's interest rate.
5.4 Hence or otherwise, calculate the interest rate on Astin's investment. Give your answer correct to ONE decimal place.

- PATTERNS AND SEQUENCES [23]

QUESTION 6

6.1 Given: $\frac{1}{2} ; \frac{1}{4} ; \frac{1}{8} ; \ldots ; \frac{1}{1024}$
6.1.1 Explain how you will determine the $4^{\text {th }}$ term of the sequence.
(2)
6.1.2 Write a formula for the $\mathrm{n}^{\text {th }}$ term of the sequence.
(2)
6.1.3 Determine the number of terms in the sequence.
6.2 Given the linear pattern: $156 ; 148 ; 140 ; 132 ; \ldots$
6.2.1 Write down the $5^{\text {th }}$ term of this number pattern.
6.2.2 Determine a general formula for the $\mathrm{n}^{\text {th }}$ term of this pattern.
6.2.3 Which term of this linear number pattern is the first term to be negative?
6.2.4 The given linear number pattern forms the sequence of first differences of a quadratic number pattern
$T_{n}=a n^{2}+b n+c$ with $T_{5}=-24$.
Determine a general formula for T_{n}.

Higher order

QUESTION 7 A question asked differently

A quadratic pattern $T_{n}=a n^{2}+b n+c$ has $\mathrm{T}_{2}=\mathrm{T}_{4}=0$ and a second difference of 12 .
Determine the value of the $3^{\text {rd }}$ term of the pattern.

FUNCTIONS AND GRAPHS [43]

QUESTION 8

The sketch below represents the graphs of
$\mathrm{f}(x)=\frac{2}{x-3}-1$ and $\mathrm{g}(x)=\mathrm{d} x+\mathrm{e}$.
Point $\mathrm{B}(3 ; 6)$ lies on the graph of g and the two graphs intersect at points A and C.

8.1 Write down the equations of the asymptotes of f. (2)
8.2 Write down the domain of f.
8.3 Determine the values of d and e, correct to the nearest integer, if the graph of g makes an angle of 76° with the x-axis.
(3)
8.4 Determine the coordinates of A and C .
8.5 For what values of x is $g(x) \geq \mathrm{f}(x)$?
8.6 Determine an equation for the axis of symmetry of f which has a positive slope.

QUESTION 9

Given: $\mathrm{f}(x)=-x^{2}+2 x+3$ and $\mathrm{g}(x)=1-2^{x}$
9.1 Sketch the graphs of f and g on the same set of axes.
9.2 Determine the average gradient of f between $x=-3$ and $x=0$.
9.3 For which value(s) of x is $\mathrm{f}(x) . \mathrm{g}(x) \geq 0$?
9.4 Determine the value of c such that the x-axis will be a tangent to the graph of h, where $\mathrm{h}(x)=\mathrm{f}(x)+\mathrm{c}$.
9.5 Determine the y-intercept of t if $\mathrm{t} x)=-\mathrm{g}(x)+1$.
9.6 The graph of k is a reflection of g about the y-axis. Write down the equation of k.

QUESTION 10 Also asked differently

Sketch the graph of $\mathrm{f}(x)=a x^{2}+\mathrm{b} x+c$ if it is also given that:

- the range of f is $(-\infty ; 7]$
- $a \neq 0$
- $b<0$
- one root of f is positive and the other root of f is negative.

Gr 11 Maths National Exemplar Paper 1

NATIONAL GRADE 11 EXAMINATIONS
Recommended weighting for Paper 1 \& Paper 2

Description	Grade 11
PAPER 1	
Algebra and Equations (and inequalities)	$\mathbf{4 5} \pm \mathbf{3}$
Patterns and Sequences	$\mathbf{2 5} \pm \mathbf{3}$
Finance, Growth and Decay	$\mathbf{1 5} \pm \mathbf{3}$
Functions and Graphs	$\mathbf{4 5} \pm \mathbf{3}$
Probability	$\mathbf{2 0} \pm \mathbf{3}$
TOTAL	$\mathbf{1 5 0}$
PAPER 2: Theorems and/or trigonometric	proofs :
maximum 12 marks	$\mathbf{2 0} \pm \mathbf{3}$
Statistics	$\mathbf{3 0} \pm \mathbf{3}$
Analytical Geometry	$\mathbf{5 0} \pm \mathbf{3}$
Trigonometry	$\mathbf{5 0} \pm \mathbf{3}$
Euclidian Geometry and Measurement	$\mathbf{1 5 0}$
TOTAL	

GRADE 12 EXEMPLAR PAPER 1

You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.

If necessary, round off answers to TWO decimal places, unless stated otherwise.

- ALGEBRA AND EQUATIONS AND INEQUALITIES [23]

QUESTION 1

1.1 Solve for x :
1.1.1 $3 x^{2}-4 x=0$
1.1.2 $x-6+\frac{2}{x}=0 ; x \neq 0$. (Leave your answer correct to TWO decimal places.)
1.1.3 $\quad x^{\frac{2}{3}}=4$
1.1.4 $3^{x}(x-5)<0$
1.2 Solve for x and y simultaneously:

$$
\begin{equation*}
y=x^{2}-x-6 \text { and } 2 x-y=2 \tag{6}
\end{equation*}
$$

1.3 Simplify, without the use of a calculator:

$$
\begin{equation*}
\sqrt{3} \cdot \sqrt{48}-\frac{4^{x+1}}{2^{2 x}} \tag{3}
\end{equation*}
$$

1.4 Given: $\mathrm{f}(x)=3(x-1)^{2}+5$ and $\mathrm{g}(x)=3$
1.4.1 Is it possible for $\mathrm{f}(x)=\mathrm{g}(x)$?

Give a reason for your answer.
(2)
1.4.2 Determine the value(s) of k for which $\mathrm{f}(x)=\mathrm{g}(x)+\mathrm{k}$ has TWO unequal real roots.

- PATTERNS AND SEQUENCES [26]

QUESTION 2

2.1 Given the arithmetic series: $18+24+30+\ldots+300$
2.1.1 Determine the number of terms in this series.
2.1.2 Calculate the sum of this series.
2.1.3 Calculate the sum of all the whole numbers up to and including 300 that are NOT divisible by 6.
2.2 The first three terms of an infinite geometric sequence are 16,8 and 4 respectively.
2.2.1 Determine the $\mathrm{n}^{\text {th }}$ term of the sequence.
2.2.2 Determine all possible values of n for which the sum of the first n terms of this sequence is greater than 31.
2.2.3 Calculate the sum to infinity of this sequence.

QUESTION 3

3.1 A quadratic number pattern $T_{n}=a n^{2}+b n+c$ has a first term equal to 1 . The general term of the first differences is given by $4 n+6$.
3.1.1 Determine the value of a.
3.1.2 Determine the formula for T_{n}.
3.2 Given the series:
$(1 \times 2)+(5 \times 6)+(9 \times 10)+(13 \times 14)+\ldots+(81 \times 82)$
Write the series in sigma notation. (It is not necessary to calculate the value of the series.)
(4) [10]

- FUNCTIONS AND GRAPHS [37]

QUESTION 4

4.1 Given: $\mathrm{f}(x)=\frac{2}{x+1}-3$
4.1.1 Calculate the coordinates of the y-intercept of f .
4.1.2 Calculate the coordinates of the x-intercept of f .
4.1.3 Sketch the graph of f , showing clearly the asymptotes and the intercepts with the axes.
4.1.4 One of the axes of symmetry of f is a decreasing function. Write down the equation of this axis of symmetry.
4.2 The graph of an increasing exponential function with equation $\mathrm{f}(x)=\mathrm{a} \cdot \mathrm{b}^{x}+\mathrm{q}$ has the following properties:

- Range: y>-3
- The points $(0 ;-2)$ and $(1 ;-1)$ lie on the graph of f.
4.2.1 Determine the equation that defines f.
4.2.2 Describe the transformation from
$\mathrm{f}(x)$ to $\mathrm{h}(x)=2.2^{x}+1$

QUESTION 5

The sketch below shows the graphs of $\mathrm{f}(x)=-2 x^{2}-5 x+3$ and $\mathrm{g}(x)=\mathrm{ax}+\mathrm{q}$. The angle of inclination of graph g is 135° in the direction of the positive x-axis. P is the point of intersection of f and g such that g is a tangent to the graph of f at P.

5.1 Calculate the coordinates of the turning point of the graph of f .
5.2 Calculate the coordinates of P, the point of contact between f and g.
5.3 Hence or otherwise, determine the equation of g. (2)
5.4 Determine the values of d for which the line $\mathrm{k}(x)=-x+\mathrm{d}$ will not intersect the graph of f .

QUESTION 6

The graph of g is defined by the equation $\mathrm{g}(x)=\sqrt{\mathrm{a} x}$.
The point (8;4) lies on g .
6.1 Calculate the value of a.
6.2 For what values of x will g be defined?
6.3 Determine the range of g .
6.4 Write down the equation of g^{-1}, the inverse of g , in the form $\mathrm{y}=\ldots$
6.5 If $\mathrm{h}(x)=x-4$ is drawn, determine ALGEBRAICALLY the point(s) of intersection of h and g .
6.6 Hence, or otherwise, determine the values of x for which $\mathrm{g}(x)>\mathrm{h}(x)$.

- FINANCE, GROWTH AND DECAY [16]

QUESTION 7

Siphokazi bought a house. She paid a deposit of R102000, which is equivalent to 12% of the selling price of the house. She obtained a loan from the bank to pay the balance of the selling price. The bank charges her interest of 9% per annum, compounded monthly.
7.1 Determine the selling price of the house.
7.2 The period of the loan is 20 years and she starts repaying the loan one month after it was granted. Calculate her monthly instalment.
7.3 How much interest will she pay over the period of 20 years? Round your answer correct to the nearest rand.
7.4 Calculate the balance of her loan immediately after her $85^{\text {th }}$ instalment.
7.5 She experienced financial difficulties after the $85^{\text {th }}$ instalment and did not pay any instalments for 4 months (that is months 86 to 89). Calculate how much Siphokazi owes on her bond at the end of the $89^{\text {th }}$ month.
7.6 She decides to increase her payments to R8 500 per month from the end of the $90^{\text {th }}$ month. How many months will it take to repay her bond after the new payment of R8 500 per month?

- DIFFERENTIAL CALCULUS [32]

QUESTION 8

8.1 Determine $\mathrm{f}^{\prime}(x)$ from first principles if $\mathrm{f}(x)=3 x^{2}-2$. (5)
8.2 Determine $\frac{\mathrm{dy}}{\mathrm{d} x}$ if $\mathrm{y}=2 x^{-4}-\frac{x}{5}$

QUESTION 9

Given: $\mathrm{f}(x)=x^{3}-4 x^{2}-11 x+30$
9.1 Use the fact that $f(2)=0$ to write down a factor
of $f(x)$.
9.3 Calculate the coordinates of the stationary points of f.
9.4 Sketch the curve of f. Show all intercepts with the axes and turning points clearly.
(2) [15]
9.5 For which value(s) of x will $\mathrm{f}^{\prime}(x)<0$?

QUESTION 10

Two cyclists start to cycle at the same time. One starts at point B and is heading due north towards point A, whilst the other starts at point D and is heading due west towards point B. The cyclist starting from B cycles at $30 \mathrm{~km} / \mathrm{h}$ while the cyclist starting from D cycles at $40 \mathrm{~km} / \mathrm{h}$. The distance between B and D is 100 km . After time t (measured in hours), they reach points F and C respectively.

10.1 Determine the distance between F and C in terms of t .
10.2 After how long will the two cyclists be closest to each other?
10.3 What will the distance between the cyclists be at the time determined in Question 10.2?

- PROBABILITY [16]

QUESTION 11

11.1 Events A and B are mutually exclusive. It is given that:

- $P(B)=2 P(A)$
- $P(A$ or $B)=0,57$

Calculate $P(B)$.
11.2 Two identical bags are filled with balls. Bag A contains 3 pink and 2 yellow balls. Bag B contains 5 pink and 4 yellow balls. It is equally likely that Bag A or Bag B is chosen. Each ball has an equal chance of being chosen from the bag. A bag is chosen at random and a ball is then chosen at random from the bag.
11.2.1 Represent the information by means of a tree diagram. Clearly indicate the probability associated with each branch of the tree diagram and write down all the outcomes.
11.2.2 What is the probability that a yellow ball will be chosen from Bag A?
11.2.3 What is the probability that a pink ball will be chosen?

QUESTION 12

Consider the word MATHS.
12.1 How many different 5 -letter arrangements can be made using all the above letters?
12.2 Determine the probability that the letters S and T will always be the first two letters of the arrangements in Question 12.1.

TOTAL: 150

EXEMPLAR MEMOS

Gr 10, 11 \& 12

GRADE 10 EXEMPLAR PAPER 1 MEMO

1.1.1 $(m-2 n)\left(m^{2}-6 m n-n^{2}\right)$
$=m^{3}-6 m^{2} n-m n^{2}$
$-2 m^{2} n+12 m n^{2}+2 n^{3}$
$=m^{3}-8 m^{2} n+11 m n^{2}+2 n^{3}<$
1.1 .2

$$
\frac{x^{3}+1}{x^{2}-x+1}
$$

$$
\frac{4 x^{2}-3 x-1}{4 x+1}
$$

$$
=\frac{(x+1)\left(x^{2}-x+1\right)}{\left(x^{2}-x+1\right)}
$$

$$
\frac{(4 x+1)(x-1)}{(4 x+1)}
$$

$=\quad(x+1)$

$$
(x-1)
$$

$=x+1-x+1$
$=2<$
1.2.1 $6 x^{2}-7 x-20$
$=(2 x-5)(3 x+4)<$
1.2.2 $a^{2}+a-2 a b-2 b$
$=a(a+1)-2 b(a+1)$
$=(a+1)(a-2 b)<$
$1.349<51<64$... i.e. 51 lies between 49 and 64 $\therefore 7<\sqrt{51}<8 \quad \ldots$ taking the square root
i.e. $\sqrt{51}$ lies between 7 and $8<$
1.4

Let $x=0, \ddot{2} \dot{4} \dot{5}$
$\therefore x=0,245245 \ldots$
$\times 1000) \quad \therefore 1000 x=245,245245 \ldots$
(2)
(2-1): $\therefore 999 x=245$

$$
\therefore x=\frac{245}{999}
$$

... i.e. x can be expressed as $\frac{a}{b}$ where $a \& b \in \mathbb{Z}$
$\therefore x$ is a rational number

$$
\text { 2.1.1 } \begin{aligned}
x^{2}-4 x & =21 \\
\therefore x^{2}-4 x-21 & =0 \\
\therefore(x+3)(x-7) & =0 \\
\therefore x+3 & =0 \quad \text { or } \quad x-7=0 \\
\therefore x & =-3
\end{aligned} \quad \begin{aligned}
& \therefore x=7
\end{aligned}
$$

$$
\text { 2.1.2 } \begin{aligned}
3 x^{\frac{5}{4}} & =96 \\
\div 3) \quad \therefore x^{\frac{5}{4}} & =32
\end{aligned}
$$

$$
\therefore\left(x^{\frac{5}{4}}\right)^{\frac{4}{5}}=\left(2^{5}\right)^{\frac{4}{5}}
$$

$$
\therefore x=2^{4}
$$

$$
\therefore x=16<
$$

2.1.3

$$
\begin{align*}
\frac{2 \sqrt{x}}{3 S} & =\mathrm{R} \\
\text { 2S) } \quad \therefore 2 \sqrt{x} & =3 \mathrm{SR} \\
\text { 2) } \quad \therefore \sqrt{x} & =\frac{3 \mathrm{SR}}{2}
\end{align*}
$$

$\div 2$)
Square:

$$
\therefore x=\frac{9 \mathrm{~S}^{2} \mathrm{R}^{2}}{4}<
$$

2.2

$$
\begin{array}{r}
6 q+7 p=3 \\
2 q+p=5
\end{array}
$$

$$
\ldots
$$

$$
0
$$

(2) $\times 3$: $\quad 6 q+3 p=15$

(1)-3: $\quad \therefore 4 p=-12$
$\therefore p=-3<$
(2: $\quad \therefore 2 q-3=5$
$\therefore 2 q=8$

$$
\therefore q=4<
$$

3.1.1 The $1^{\text {st }} 3$ terms:

$3(3)+1 ;$	$2(3)$	$;$
$\therefore 10(3)-7$		
\therefore	6	$2<$

3.1.2 The difference is -4

$$
\begin{aligned}
\therefore & \ln T_{n}=\mathrm{an}+\mathrm{b}: \quad \mathrm{a}=-4 \\
& \& \mathrm{~T}_{0}=\mathrm{b}=14 \quad \ldots \text { the term } \\
\therefore & \mathrm{T}_{\mathrm{n}}=-4 \mathrm{n}+14<
\end{aligned}
$$

3.1.3 n ? if $T_{n}<-31$

$$
\begin{array}{r}
\therefore-4 n+14<-31 \\
\therefore-4 n<-45 \\
\div(-4) \quad \therefore n>11 \frac{1}{4}
\end{array}
$$

\therefore The $12^{\text {th }}$ term $<$
3.2 The even numbers: $6 ; 12 ; 18$...
\therefore The $13^{\text {th }}$ even number $=13 \times 6=78<$

OR: The $13^{\text {th }}$ even number
$=$ the $26^{\text {th }}$ term of the pattern
$=26 \times 3$
$=78$
$4.1 \mathrm{P}=4500 ; i=\frac{4,25}{100}=0,0425 ; \mathrm{n}=\frac{30}{12}=2 \frac{1}{2} ; \mathrm{A} ?$

$$
\mathrm{A}=\mathrm{P}(1+i)^{\mathrm{n}}=4500(1+0,0425)^{2,5}=\mathrm{R} 4993,47<
$$

4.2.1 The loan amount $=$ R5 $999-$ R600 $=$ R5 399

The accumulated amount, $A=P(1+i n)$
where $P=5399 ; i=8 \%=0,08 ; n=1 \frac{1}{2}$ years; A ?
$\therefore \quad A=5399\left[1+(0,08)\left(\frac{3}{2}\right)\right]$
$=R 6046,88$
\therefore The monthly amount to be paid $=\frac{6046,88}{18}$

4.2.2 The amount of interest

$=$ The total amount paid over the 18 months

- the loan amount
$=$ R6 046,88 - R5 399
$=\mathrm{R} 647,88$
$4.328,35 \mathrm{~g}$ is worth $\$ 978,34=\mathrm{R} 978,34 \times 8,79$
= R8 599,61
$\therefore 1 \mathrm{~g}$ is worth $\frac{\mathrm{R} 8599,61}{28,35}$
$\therefore 1 \mathrm{~kg}$ is worth $\mathrm{R} \frac{8599,61}{28,35} \times 1000 \ldots 1 \mathrm{~kg}=1000 \mathrm{~g}$

$$
\approx R 303337,16<
$$

```
5.1.1 A\capB < OR: A and B <
5.1.2 A'< OR: not A <
5.2 Set B <
```

5.3.2
5.3.1 Of the 40 learners, 7 are left-handed $\therefore 40-7=33$ are right-handed

Of the 18 learners who play soccer, 4 are left-handed
$\therefore 14$ learners who play soccer are right-handed
\therefore The number of learners who are right-handed and DON'T play soccer
$=33-14=19<$

Grade 10 Maths National Exemplar Memo: Paper
5.3.3 (a) $n(L$ or $S)=3+4+14=21$

$$
\therefore P(L \text { or } S)=\frac{21}{40}<
$$

(b) $n(R$ and $S)=14$
$\therefore \mathrm{P}(\mathrm{R}$ and S$)=\frac{14}{40} \quad \begin{gathered}\text { of all right-handed } \\ \text { people }\end{gathered}$

$$
=\frac{7}{20}<
$$

$\mathrm{f}: \quad \mathrm{y}=\frac{3}{x}+1$

$$
\begin{aligned}
& y \text {-intercept }(x=0): \text { none } \\
& x \text {-intercept }(y=0): \quad \frac{3}{x}+1=0
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \frac{3}{x}=-1 \\
& \therefore x=-3
\end{aligned}
$$

$g: y=-2 x-4$

$$
\begin{aligned}
& y \text {-intercept }(x=0): y=-4 \\
& x \text {-intercept }(y=0):-2 x-4=0 \\
& \therefore-2 x=4
\end{aligned}
$$

$$
\therefore x=-2
$$

Grade 10 Maths National Exemplar Memo: Paper 1
Asymptotes: $y=1<$

$$
\& x=0 \text { (the } y \text {-axis) }
$$

6.3 Domain of $\mathrm{f}: \quad x \neq 0 ; x \in \mathbb{R}<$

$$
\ldots(-\infty ; 0) \cup(0 ; \infty)
$$

6.4

$$
\begin{gathered}
f(x)=\mathrm{g}(x) \Rightarrow \frac{3}{x}+1=-2 x-4 \\
\times x) \quad \therefore 3+x=-2 x^{2}-4 x \\
\therefore 2 x^{2}+5 x+3=0 \\
\therefore(2 x+3)(x+1)=0 \\
\therefore 2 x+3=0 \quad \text { or } \quad x+1=0 \\
\therefore 2 x=-3 \quad \therefore x=- \\
\therefore x=-\frac{3}{2}<
\end{gathered}
$$

Note: These are the x-coordinates of the points of intersection of f and g :

$$
\left(-1 \frac{1}{2} ;-1\right) \&(-1 ;-2)
$$

6.5

$$
\begin{aligned}
-1 & \leq g(x)<3 \\
\therefore-1 & \leq-2 x-4<3 \quad \ldots g(x)=-2 x-4
\end{aligned}
$$

add 4: $\therefore 3 \leq-2 x<7$
When one divides by
$\div(-2): \quad \therefore-\frac{3}{2} \geq \quad x \quad-\frac{7}{2}$. a negative number, the direction of the 'inequality' changes.
$\therefore-\frac{7}{2}<x \leq-\frac{3}{2}$
The inequality has been rewritten with the smaller value on the left.
i.e. $-3 \frac{1}{2}<x \leq-1 \frac{1}{2}<$ OR: $\left(-3 \frac{1}{2} ;-1 \frac{1}{2}\right]<$ (means excluding;] means including
6.6 $\mathrm{k}(x)=2 \mathrm{~g}(x)=2(-2 x-4)=-4 x-8$
\therefore The equation of k : $\mathrm{y}=-4 x-8$
\therefore The y-intercept of k : $(0 ;-8)$ \qquad substitute $x=0$
6.7 x-intercept of $\mathrm{g}:(-2 ; 0)$
\& x-intercept of h
$(2 ; 0)$
y-intercept of $g:(0 ;-4)$
\& y-intercept of $h:(0 ;-4)<$

Notice: The reflected points have the same y-coordinate, but the x-coordinates are opposite in sign.
7.1 C(-2; 0)) $<$ symmetrical about the y-axis
7.2 The equation of $\mathrm{f}: \quad \mathrm{y}=\mathrm{a}(x+2)(x-2) \ldots$ roots

$$
y=a\left(x^{2}-4\right)
$$

$$
-2 \& 2
$$

Subst. $B\left(-3 ; \frac{5}{2}\right): \therefore \frac{5}{2}=\mathrm{a}\left[(-3)^{2}-4\right]$

$$
\therefore \quad \frac{5}{2}=\mathrm{a}(5)
$$

$$
\div 5) \quad \therefore \quad a=\frac{1}{2}
$$

\therefore The equation of $\mathrm{f}: \quad \mathrm{y}=\frac{1}{2}\left(x^{2}-4\right)$

$$
\therefore y=\frac{1}{2} x^{2}-2<
$$

7.3 The y-intercept of f is $(0 ;-2)$
\therefore The range of $f: y \geq-2<O R:[-2 ; \infty)<$

Graphs are easier than you thought!
The Answer Series offers excellent material in several subjects for $\mathrm{Gr} 10-12$.

See our website www.theanswer.co.za
7.4 The graph of h is obtained by
flipping f
... $-f(x)$
then, shifting down
2 units
. . -2
The range of h : $y \leq 0<$

OR: $(-\infty ; 0]$
$\mathrm{OR}: \mathrm{h}(x)=-\left(\frac{1}{2} x^{2}-2\right)-2$
. $\mathrm{h}(x)=-\frac{1}{2} x^{2}+2-2$
$\therefore \mathrm{h}(x)=-\frac{1}{2} x^{2}$

\therefore The range of $\mathrm{h}: \mathrm{y} \leq 0$
7.5 q $=-4 \ldots$ range $y>-4 \Rightarrow y=-4$ is an asymptote

Equation of g :

$$
y=b^{x}-4 ; b>0
$$

Substitute $A(2 ; 0)$:

$$
0=b^{2}-4
$$

$\therefore \mathrm{b}^{2}=4$
$\therefore \mathrm{b}=2 \ldots b \neq-2 \quad \because b>0$

Equation of g :

GRADE 11 EXEMPLAR PAPER 1 MEMO

- ALGEBRA AND EQUATIONS AND

 INEQUALITIES [47]1.1.2 $2 x^{2}-4 x+1=0$

$$
\begin{aligned}
\therefore x & =\frac{-(-4) \pm \sqrt{(-4)^{2}-4(2)(1)}}{2(2)} \quad \begin{array}{l}
x=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}} \\
\text { Note: No formula } \\
\text { sheet is supplied } \mathrm{f} \\
\text { the Grade 11 exan }
\end{array} \\
& =\frac{4 \pm \sqrt{16-8}}{4} \\
& =\frac{4 \pm \sqrt{8}}{4} \\
& =\frac{4 \pm 2 \sqrt{2}}{4} \ldots \quad \begin{array}{r}
\sqrt{8}=\sqrt{4 \times 2}=\sqrt{4} \times \sqrt{2} \\
=2 \sqrt{2}
\end{array} \\
& =\frac{\mathbf{2 \pm \sqrt { 2 }}}{2}<\ldots \frac{2(2 \pm \sqrt{2})}{42}
\end{aligned}
$$

$$
\left.\begin{array}{rl}
& 125^{\frac{2}{3}} \\
= & \left(5^{3}\right)^{\frac{2}{3}} \\
= & 5^{2} \ldots\left(a^{m}\right)^{n}=a^{m n} \\
= & 25<
\end{array} \quad \begin{array}{rll}
\text { OR: } & 125^{\frac{2}{3}} \\
= & 5^{2} \quad \ldots \text { of } 125 \text { is } 5 \\
= & 25<
\end{array}\right)
$$

$$
\text { 1.2.2 }(3 \sqrt{2}-12)(2 \sqrt{2}+1) \quad \ldots \quad \begin{aligned}
& \text { FOIL': } \\
& \text { Firsts, Outers, } \\
& \text { Inners, Lasts! }
\end{aligned}
$$

$$
=6.2+3 \sqrt{2}-24 \sqrt{2}-12
$$

$$
=12-21 \sqrt{2}-12
$$

$$
\sqrt{2} \sqrt{2}=\mathbf{2}
$$

$$
\begin{aligned}
& \begin{array}{ll}
\text { 1.1.1 } & (2 x-1)(x+5)=0 \\
\Rightarrow & 2 x-1=0 \text { or } x+5=0 \quad a \times b=0 \\
\mathrm{a}=0
\end{array} \\
& \therefore 2 x=1 \\
& \therefore x=\frac{1}{2}<
\end{aligned}
$$

1.3.1 The expression is undefined for
$3 x-9=0$
Division by zero
is undefined.
$\therefore 3 x=9$
is undefined.
$\therefore \boldsymbol{x}=3<$
1.3.2 $\frac{x^{2}-x-6}{3 x-9}=\frac{(x-3)(x+2)}{3(x-3)}$

$$
=\frac{x+2}{3} \text { for } x \neq 3<
$$

2.1.1

$$
x^{2}-x-6<-3 x+2
$$

$$
\therefore x^{2}+2 x-8<0
$$

$$
\therefore(x+4)(x-2)<0
$$

$$
\therefore-4<x<2<
$$

2.1.2 The integers between -4 and 2 are
$x^{2}+2 x-8<0$

$$
\begin{aligned}
& -3 ;-2 ;-1 ; 0 \text { and } 1 \\
& \therefore \text { The sum of the integers } \begin{aligned}
& =(-3)+(-2)+(-1)+0+1 \\
& =-5
\end{aligned}
\end{aligned}
$$

$$
=-5<
$$

2.2.1

$$
\begin{aligned}
& \frac{4^{x} \cdot 4^{-1}+4^{x} \cdot 4}{17 \cdot 4^{x} \cdot 3^{x}} \ldots \begin{array}{l}
a^{m+n}=a^{m} \cdot a^{n} \\
(a b)^{n}=a^{n} \cdot b^{n}
\end{array} \\
=\frac{4^{x}\left(\frac{1}{4}+4\right)}{17 \cdot 4^{x} \cdot 3^{x}} & \cdots \quad \mathbf{O R :}=\frac{4^{x-1}\left(1+4^{2}\right)}{17 \cdot 4^{x} \cdot 3^{x}} \\
= & \frac{\frac{17}{4}}{17 \cdot 3^{x}}
\end{aligned}
$$

$$
=\frac{17}{4} \times \frac{1}{17.3^{x}}
$$

$$
=\frac{1}{4 \cdot 3^{x}} \quad \cdots \cdot \frac{1}{4} \cdot 3^{-x}<
$$

2.2.2 The expression $=\frac{1}{4} \cdot 3^{-x}=\frac{1}{4} \cdot 4 \mathrm{t}=\mathbf{t}<$
2.3

$$
\begin{aligned}
3^{y} & =\left(3^{4}\right)^{x} \quad \& \quad y=x^{2}-6 x+9 \\
3^{y} & =3^{4 x} \\
\therefore y & =4 x
\end{aligned}
$$

$$
\begin{aligned}
\text { Equating © \& : } \quad \therefore x^{2}-6 x+9 & =4 x \\
\therefore x^{2}-10 x+9 & =0 \\
\therefore(x-1)(x-9) & =0 \\
\therefore x=1 \text { or } x & =9
\end{aligned}
$$

$$
\text { If } x=1: \quad y=4(1)=4
$$

$$
\text { If } x=9: y=4(9)=36
$$

The solutions: $(1 ; 4)$ or $(9 ; 36)<$
3.1 The roots of a quadratic equation: $x=\frac{3 \pm \sqrt{4-8 p}}{4}$
i.e. The roots are $\frac{3+\sqrt{4-8 p}}{4}$ and $\frac{3-\sqrt{4-8 p}}{4}$
3.1.1 The roots will be EQUAL if

$$
4-8 p=0
$$

$$
-8 p=-4
$$

$\div(-8)$

$$
p=\frac{1}{2}<
$$

Compare the roots.
$+\sqrt{ }$ and $-\sqrt{ }$ is the only part that is different.
3.1.2 The roots will be NON-REAL if

$\sqrt{\text { a negative no. }}$
is non-real
3.2.1 Both the following conditions must hold

$$
-5-x \geq 0 \quad \ldots \sqrt{a} \text { only real if } a \geq 0
$$

$$
-x \geq-5
$$

$$
\times(-1) \quad \therefore x \leq 5
$$

AND

- $x+1 \geq 0$
$\therefore x \geq-1$
$\therefore-1 \leq x \leq 5<$
\sqrt{a} defined as $+\sqrt{a}$
\quad for all $a \geq 0$
$\therefore \quad$ For equation to be
true $R H S \geq 0$

Grade 11 Maths National Exemplar Memo: Paper 1

$$
\begin{aligned}
& \sqrt{5-x}=x+1 \\
& \therefore(\sqrt{5-x})^{2}=(x+1)^{2} \\
& \therefore 5-x=x^{2}+2 x+1 \\
& \therefore 0=x^{2}+3 x-4 \\
& \therefore(x+4)(x-1)=0 \\
& \therefore x=-4 \text { or } 1 \\
& \text { But -1 } \leq x \leq 5 \ldots \text { see } 3.2 .1 \\
& \therefore \text { Only } x=1 \\
& \text { OR: Test } \ldots \\
& \text { For } x=-4: \\
& \text { LHS }=\sqrt{9}=3 \quad \& \quad \text { RHS }=-3 \quad \therefore x \neq-4 \\
& \text { For } x=1: \text { LHS }=\text { RHS }=2 \quad \therefore x=1 \checkmark
\end{aligned}
$$

3.2.3 The solution: $\boldsymbol{x}=-4<$

Note: This is the rejected answer in 3.2.2!
Squaring the equation $-\sqrt{5-x}=x+1$ will yield the identical calculation as in 3.2.2 except, when we test, $x+1$ must be negative .

- FINANCE, GROWTH AND DECAY [18]

4.1

$\mathbf{A}=\mathbf{P}(1-$ in $) \quad \ldots .$| Formula for depreciation |
| :--- |
| on the straight-line method. |

$\mathbf{A} \boldsymbol{P} ; \mathbf{P}=\mathrm{R} 145000 ; \mathbf{i}=17 \%=\frac{17}{100}=0,17 ; \mathbf{n}=5$

$$
\therefore A=145000[1-(0,17)(5)]
$$

$$
=R 21750<
$$

4.2.1 The rate earned quarterly, $\mathbf{i}=\frac{8 \%}{4}=2 \%=0,02<$
$4.2 .2 \quad \mathbf{1}+\mathbf{i}_{\text {eff }}=\left(\mathbf{1}+\frac{\mathbf{i}_{\text {nom }}}{\mathbf{4}}\right)^{\mathbf{4}}$

$$
\begin{aligned}
& =(1+0,02)^{4} \\
& =(1,02)^{4} \\
& =1,08243 \ldots \\
\mathbf{i}_{\text {eff }} & =0,08243 \ldots \\
& \approx 8,24 \% \text { per annum }
\end{aligned}
$$

semi-annually monthly
$\mathbf{i}=\frac{9 \%}{2}=\frac{0,09}{2} \quad \mathbf{i}=\frac{7,5 \%}{12}=\frac{0,075}{12}$
$\mathbf{n}=3$
n $=42$

$\mathrm{P}=\mathrm{R} 14000$
The accumulated amount, A
$=R 14000\left(1+\frac{0,09}{2}\right)^{3}\left(1+\frac{0,075}{12}\right)^{42}$
\approx R20 755,08
5.1 The value (of both investments) at the start (i.e. at $x=0$) $=$ R15 $000<$
5.2 Simple interest < . . . straight-line appreciation
5.3 i? ; P = R15 $000 ; \mathbf{n}=6 ; \mathbf{A}=\mathrm{R} 31000$ $A=P(1+i n)$
$31000=15000[1+(i)(6)]$
$\div 15000$)

$$
\begin{aligned}
1+6 i & =2,0 \dot{6} \\
\therefore 6 i & =1,0 \dot{6} \\
\therefore i & =0,17 \\
\therefore i & =17,78 \%
\end{aligned}
$$

5.4 Determine w:
(12; w) is a point on Dumisani's graph.
Substitute $\mathrm{n}=12 ; \mathrm{P}=\mathrm{R} 15000 ; \mathrm{i}=17,777 \ldots$ in

$$
\begin{aligned}
\mathbf{A} & =\mathbf{P}(\mathbf{1}+\mathbf{i n}) \\
w & =15[1+(0,17)(12)] \\
& \approx 47
\end{aligned}
$$

. . . Dumisani's formula

Substitute point $B(12 ; 47)$ in

$$
\mathrm{A}, \mathrm{P} \text { and } \mathrm{w} \text { represent }
$$ 'thousands of rands'

$$
A=P(1+i)^{n}
$$

Astin's formula

$$
\therefore 47=15(1+i)^{12}
$$

$\therefore(1+i)^{12}=3,13$

$$
\therefore 1+i=1,09985 \ldots
$$

$$
\begin{aligned}
\therefore i & =0,09985 \ldots \\
& =10.0 \%
\end{aligned}
$$

$$
=10,0 \%
$$

- PATTERNS AND SEQUENCES [23]

$6.1 \frac{1}{2} ; \frac{1}{4} ; \frac{1}{8} ; \ldots ; \frac{1}{1024}$
6.1.1 Multiply $\frac{1}{8}$ by $\frac{1}{2}$:
$T_{4}=\frac{1}{16}<$

OR: The terms are: $2^{-1} ; 2^{-2} ; 2^{-3} ; \ldots ; 2^{-10}$ $\therefore \mathbf{T}_{4}=2^{-4} \quad \ldots$ the fourth term $=2^{\text {-four }}$ $=\frac{1}{16}$
6.1.2 The nth term, $\mathbf{T}_{\mathbf{n}}=\left(\frac{1}{\mathbf{2}}\right)^{\mathrm{n}}$ or $\mathbf{2}^{-\mathrm{n}}<\ldots$ see 6.1 .1
6.1.3 $1024=2^{10} \quad \ldots$ trial and error!
$\therefore \frac{1}{1024}=\left(\frac{1}{2}\right)^{10}$ or 2^{-10}
\therefore The number of terms in the sequence, $\mathbf{n}=10$
$6.2 \quad 156 ; 148 ; 140 ; 132 ; .$.
6.2.1 The $5^{\text {th }}$ term, $\mathbf{T}_{5}=132-8=124<$
6.2.2 The general term of a linear pattern is $T_{n}=a n+b$ This sequence has a common $1^{\text {st }}$ difference of -8 $\therefore a=-8$

$$
\text { and } \begin{array}{rlrl}
\mathrm{T}_{1} & =\mathrm{a}+\mathrm{b} & =156 & \ldots T_{1}=a(1)+b \\
\therefore-8+\mathrm{b} & =156
\end{array}
$$

$$
\therefore \mathrm{b}=164
$$

\therefore A general formula: $\mathrm{T}_{\mathrm{n}}=\mathbf{- 8 n}+164<$
6.2.3 T_{n} negative, i.e. $\mathrm{T}_{\mathrm{n}}<0$
$\Rightarrow-8 n+164<0$

$$
\div(-8) \quad \therefore \mathrm{n}>20 \frac{1}{2}
$$

\therefore The $1^{\text {st }}$ term to be negative is the $21^{\text {st }}$ term $<$

6.2.4 $1^{\text {st }}$ difference (between T_{1} and T_{2} of the quadratic pattern)
$=3 a+b=156$

$$
\begin{array}{cccc}
56 & 148 & 140 & 132 \\
-8 & -8 & -8
\end{array}
$$

- The $2^{\text {nd }}$ difference

$$
2 a=-8
$$

$\therefore a=-4$
$\therefore 3(-4)+b=156$

$$
\therefore b=168
$$

- $\mathrm{T}_{5}=\mathrm{a}(5)^{2}+\mathrm{b}(5)+\mathrm{c}=-24$
given $T_{5}=-24$

$$
\begin{aligned}
25(-4)+5(168)+c & =-24 \\
\therefore-100+840+c & =-24 \\
\therefore c & =-764
\end{aligned}
$$

$\therefore T_{n}=-4 n^{2}+168 n-764$
There are various other methods !
7. $T_{n}=a n^{2}+b n+c$
$\mathrm{T}_{2}=\mathrm{a}(2)^{2}+\mathrm{b}(2)+\mathrm{c}=4 \mathrm{a}+2 \mathrm{~b}+\mathrm{c}=0$
$\mathrm{T}_{4}=\mathrm{a}(4)^{2}+\mathrm{b}(4)+\mathrm{c}=16 \mathrm{a}+4 \mathrm{~b}+\mathrm{c}=0$

$$
\text { (2)- (1): } \quad 12 a+2 b=0
$$

$$
6 a+b=0
$$

$\& 2^{\text {nd }}$ difference, $2 a=12$

$$
\begin{aligned}
\angle a & =1 \angle \\
\therefore \quad a & =6
\end{aligned}
$$

$$
36+b=0
$$

$$
\therefore b=-36
$$

(1) $\quad 4(6)+2(-36)+c=0$

$$
\therefore c=-24+72
$$

$$
\therefore c=48
$$

$T_{3}=a(3)^{2}+b(3)+c$
$=9 a+3 b+c$
$=9(6)+3(-36)+48$
$=-6<$
There are various other methods!

- FUNCTIONS AND GRAPHS [43]

8.1 $x=3$ (vertical asymptote) <
\& $\mathbf{y}=-1$ (horizontal asymptote)

OR: Find e by substituting $\mathrm{d}=4$ and $\mathrm{B}(3 ; 6)$ into $\mathrm{g}(x)=\mathrm{d} x+\mathrm{e}$.

$$
6=(4)(3)+e
$$

$$
6=12+e
$$

$$
-6=e
$$

8.4 At A \& C:

$$
\begin{aligned}
\frac{2}{x-3}-1 & =4 x-6 \\
\times(x-3) \quad \therefore 2-(x-3) & =(4 x-6)(x-3) \\
\therefore 2-x+3 & =4 x^{2}-18 x+18 \\
\therefore 0 & =4 x^{2}-17 x+13 \\
\therefore 0 & =(4 x-13)(x-1)
\end{aligned}
$$

$\therefore x=1$ at A and $x=\frac{13}{4}$ at C
$g(1)=4(1)-6=-2$ and $g\left(\frac{13}{4}\right)=4\left(\frac{13}{4}\right)-6=7$
$\therefore A(1 ;-2)$ and $C\left(\frac{13}{4} ; 7\right)<$
8.5 $1 \leq x<3$ or $x \geq \frac{13}{4}<\ldots \quad g$ is above or on f
[Note: $x \neq 3 \quad \because \mathrm{f}(x)$ is undefined at $x=3$]

$$
8.6 \quad \begin{aligned}
y & =(x-3)-1 \\
\therefore y & =x-4<
\end{aligned}
$$

Grade 11 Maths National Exemplar Memo: Paper 1
OR: Axis of symmetry: $\mathrm{y}=x+\mathrm{c}$
Substitute (3; -1): $\quad-1=3+c$
$-4=c$
Equation: $y=x-4$
$9.1 \rightarrow \mathrm{f}(x)=-x^{2}+2 x+3$
\Rightarrow y-intercept: $(0 ; 3) \quad \ldots x=0$
$\Rightarrow x$-intercepts: Substitute $y=0$

$$
-x^{2}+2 x+3=0
$$

$$
\times(-1) \quad \therefore x^{2}-2 x-3=0
$$

$$
(x-3)(x+1)=0
$$

$$
\therefore x=3 \text { or }-1
$$

\rightarrow Turning point: Axis of symmetry: $x=1$ (Halfway between the roots)
\& Maximum $y=-(1)^{2}+2(1)+3=4$
\therefore Turning point is $(1 ; 4)$

- $g(x)=1-2^{x}$
\rightarrow y-intercept: Substitute $x=0$
$\therefore y=1-2^{0}=1-1=0$
$\therefore(0 ; 0)$
x-int. too!
\Rightarrow equation of asymptote: $y=1$

Grade 11 Maths National Exemplar Memo: Paper 1
$9.2 f(-3)=-(-3)^{2}+2(-3)+3=-9-6+3=-12$
\& $f(0)=-(0)^{2}-2(0)+3=3$
\therefore Average gradient between $x=-3$ and $x=0$

$$
\begin{aligned}
& =\frac{f(0)-f(-3)}{0-(-3)} \\
& =\frac{3-(-12)}{3} \\
& =\frac{15}{3} \\
& =5<
\end{aligned}
$$

$9.3-1 \leq x \leq 0$ or $x \geq 3<$

Observe $\mathrm{f}(x)$ and $\mathrm{g}(x)$, the y-values of f and g. The question is asking for which values of x, moving from left to right, is the product of the graphs positive or zero? i.e. for which values of x do the graphs have the same sign, either both positive or both negative and for which values of x are either of the graphs zero.

$9.5 \quad \mathrm{t}(x)=-\left(1-2^{x}\right)+1$
$=-1+2^{x}+1$
$=2^{x}$
At the y-intercept, $x=0$

$$
\therefore y=2^{0}=1
$$

$\therefore(0 ; 1)<$
9.6 $k(x)=1-\mathbf{2}^{-x}<$

When points (or graphs) are reflected about the y-axis,
x is replaced by $-x$.
e.g. $(\mathbf{1} ;-1)$ on g becomes $(-1 ;-1)$ on k.

10. The range, $(-\infty ; 7]$, indicates the y-values
$\Rightarrow \operatorname{Max} \mathrm{f}(x)=7$ and $\mathrm{a}<0$;
Axis of symmetry:
$x=-\frac{\mathrm{b}}{2 \mathrm{a}}=-\frac{\mathrm{Z}}{-}$ is negative;
... it is given that $b<0$ and concluded that a <0.

One root positive \& one negative
\Rightarrow roots on opposite sides of y-axis.
Note: Range notation:
(means excluding \& J means including

PROBABILITY [19]

- Events A and B are independent if:
- $\mathbf{P}(\mathbf{A}$ and $\mathbf{B})=\mathbf{P}(\mathbf{A}) \times \mathbf{P}(\mathbf{B})$

Events A and B are mutually exclusive if:

- $\mathbf{P}(\mathbf{A} \cap \mathbf{B})=0$, or if:
- $\mathbf{P}(\mathbf{A}$ or $\mathbf{B})=\mathbf{P}(\mathbf{A})+\mathbf{P}(B)$

11.1 Method 1

$\mathrm{P}(\mathrm{W}$ and T$)=0,14 \quad \ldots$ given
$\therefore \mathrm{P}(\mathrm{W} \cap \mathrm{T}) \neq 0$
W and T are not mutually exclusive events

Method 2

$\mathrm{P}(\mathrm{W}$ or T$)=0,26+0,14+0,21=0,61$
$P(W)+P(T)=0,4+0,35=0,75$
$\neq 0,61$
$\therefore \mathrm{P}(\mathrm{W}$ or T$) \neq \mathrm{P}(\mathrm{W})+\mathrm{P}(\mathrm{T})$
$\therefore \mathrm{W}$ and T are not mutually exclusive events
11.2
$P(W$ and $T)=0,14$
$P(W) \times P(T)=(0,4)(0,35)=0,14$
$P(W$ and $T)=P(W) \times P(T)$
. W and T are independent events <
12.

12.1.1 $a=5<$
. . line 3
Lines 1, 2 and 7 were not required for finding values a to e.
b=4<... line 4
$\mathbf{c}=\mathbf{8}<\ldots$ line 5 , but after a is determined
$d=1<\ldots$ line 6
$\mathbf{e}=6<\ldots e=n(S)-n(H \cup T \cup N)$
$=33-27 \quad \ldots 33$ learners were surveyed

Note: $\mathrm{n}(\mathrm{H} \cup \mathrm{T} \cup \mathrm{N})=18+1+4+4=27$
12.1.2 $6<\ldots$ the value of e, the number not in H, T or N

Note: In Question 12.1.2, the number of learners is required.
In Question 12.1.3 \& 12.1.4 the probability is required.

NB: The probability of an event (E) occurring $=$ the number of ways E can occur the total number of outcomes
12.1.3 The number of learners playing netball ONLY $=4$
\therefore The probability that a learner plays netball only
$=$ the number that play netball only
the total number of learners
$=\frac{4}{33}$
$(\simeq 0,12)$
12.1.4 The number of learners playing hockey or netball (or both) $=26$. . $n(H \cup N)$
hockey or netball (or both)

$$
=\frac{\mathrm{n}(\mathrm{H} \cup \mathrm{~N})}{\mathrm{n}(\mathrm{~S})}=\frac{26}{33}(\approx 0,78)<
$$

12.2

$P(a$ learner does Maths)

$=\mathrm{P}$ (a girl doing Maths) $+\mathrm{P}($ a boy doing Maths $)$
$=(60 \% \times 45 \%)+(40 \% \times 35 \%)$
$=0,27+0,14$
$=0,41<\quad \ldots=41 \%$

OR: Using decimals only:
$P(M)=P(G$ and $M)+P(B$ and $M)$
$=(0,6 \times 0,45)+(0,4 \times 0,35)$
$=0,27+0,14$
$=0,41<$

GRADE 12 EXEMPLAR PAPER 1 MEMO

- ALGEBRA AND EQUATIONS AND INEQUALITIES [23]

$$
\begin{aligned}
& 3 x^{2}-4 x=0 \\
& \therefore x(3 x-4)=0 \\
& \therefore \boldsymbol{x}=\mathbf{0}<\quad \text { or } \quad 3 x-4=0 \\
& \therefore 3 x=4 \\
& \therefore \boldsymbol{x}=\frac{4}{3}< \\
& \quad x-6+\frac{2}{x}=0 \\
& \therefore x) \quad \therefore \quad x^{2}-6 x+2=0 \\
& \therefore x=\frac{-(-6) \pm \sqrt{(1-6)^{2}-4(1)(2)}}{2(1)} \\
& \therefore x=\frac{6 \pm \sqrt{28}}{2} \\
& \therefore \boldsymbol{x} \simeq 5,65 \text { or } 0,35<
\end{aligned}
$$

	$\sqrt{3} \sqrt{16 \times 3}-\frac{\left(2^{2}\right)^{x+1}}{2^{2 x}}$
$=$	$\sqrt{3} \sqrt{16} \sqrt{3}-\frac{2^{2 x+2}}{2^{2 x}}$
$=$	$(\sqrt{3})^{2} \cdot 4-2^{2 x+2-2 x}$
$=$	$3.4-2^{2}$
$=$	$12-4$
$=$	$8<$

1.4 Note: Each of the 2 questions requires a 2 mark answer only! Lengthy algebraic calculations (see the alternative methods) would not be appropriate!

A rough sketch of f and g :

1.4.1 No < ; The MINIMUM value of $\mathrm{f}(x)=5$ f and g have no points of intersection <
1.4.2 k > 2 <
$\mathrm{g}(x)+\mathrm{k}$ must be >5 so that a line $\mathrm{y}=\mathrm{g}(x)+\mathrm{k}$ (parallel to the x-axis) will cut f twice.

OR: Algebraic methods, requiring more time!
1.4 .1

No $<; \mathrm{f}(x)=\mathrm{g}(x)$

$3(x-1)^{2}+5=3$
$3(x-1)^{2}=-2$
$(x-1)^{2}=-\frac{2}{3}$
which is impossible because a square cannot be negative.

$$
\begin{aligned}
& \text { OR: } \begin{aligned}
& 3\left(x^{2}-2 x+1\right)+5=3 \\
& \therefore 3 x^{2}-6 x+3+5=3 \\
& \therefore 3 x^{2}-6 x+5=0 \\
& \therefore x=\frac{-(-6) \pm \sqrt{(-6)^{2}-4(3)(5)}}{2(3)} \\
&=\frac{6 \pm \sqrt{-24}}{6}
\end{aligned}\left\{\begin{array}{l}
\Delta=-24 \\
\therefore \sqrt{\Delta} \text { is non-real }
\end{array}\right.
\end{aligned}
$$

There are no solutions to the equation $\mathrm{f}(x)=\mathrm{g}(x)$.

$$
\text { 1.4.2 } \begin{aligned}
\mathrm{f}(x)=\mathrm{g}(x)+\mathrm{k} \Rightarrow 3(x-1)^{2}+5 & =3+\mathrm{k} \\
\therefore 3\left(x^{2}-2 x+1\right)+5-3-\mathrm{k} & =0 \\
\therefore 3 x^{2}-6 x+(5-\mathrm{k}) & =0
\end{aligned}
$$

$\Delta=(-6)^{2}-4(3)(5-k)$
$=36-60+12 \mathrm{k}$
$=12 \mathrm{k}-24$
If we want 2 (real \& unequal) roots, then Δ must be positive

$$
\begin{aligned}
\therefore 12 k-24 & >0 \\
\therefore 12 k & >24 \\
\therefore k & >2
\end{aligned}
$$

The sketch is much easier.

PATTERNS AND SEQUENCES [26]

$2.1 \quad 18+24+30+\ldots+300$
2.1.1 The series is arithmetic: $a=18 ; d=6$; n ?
$\mathrm{T}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d} \Rightarrow 300=18+(\mathrm{n}-1)(6)$

$$
\begin{aligned}
\therefore 282 & =6(n \\
\div 6) \quad \therefore \mathrm{n}-1 & =47
\end{aligned}
$$

48 terms <
OR: This is a linear series
\therefore The general term, $\mathrm{T}_{\mathrm{n}}=\mathrm{an}+\mathrm{b}$ where

$$
a=\text { the } 1^{\text {st }} \text { difference }=6 \quad \& \quad b=T_{0}=12
$$

$$
T_{n}=6 n+12
$$

$$
\begin{aligned}
\therefore \text { Let } 6 n+12 & =300 \\
\therefore 6 n & =288 \\
n & =48
\end{aligned}
$$

48 terms <

2.1.2 The sum, $S_{n}=\frac{n}{2}\left(a+T_{n}\right)$
where $n=48$ (from 2.1.1) ; $a=18 \quad \& \quad T_{48}=300$

$$
\therefore \mathrm{S}_{48}=\frac{48}{2}(18+300)
$$

$$
=7632<
$$

OR: $S_{n}=\frac{n}{2}[2 a+(n-1) d]$
where $n=48 ; a=18$ \& $d=6$

$$
\therefore S_{n}=\frac{48}{2}[2(18)+(48-1)(6)]
$$

$=7632<$
2.1.3 The sum of all the whole numbers up to and including 300 $=(0+) 1+2+3+\ldots+300$
$=\frac{300}{2}(1+300) \ldots S_{n}=\frac{n}{2}\left(a+T_{n}\right)$
= 45150
\therefore The required sum $=45150-(6+12+7632)$
$=37500<$
2.2 G.S.: $16 ; 8 ; 4$;
2.2.1 $\mathrm{T}_{\mathrm{n}}=a \mathrm{ar}^{\mathrm{n}-1}$ where $\mathrm{a}=16 \quad \& \quad \mathrm{r}=\frac{8}{16}$ or $\frac{4}{8}=\frac{1}{2}$

$$
\begin{aligned}
\therefore T_{n}=16 \cdot\left(\frac{1}{2}\right)^{n-1} & =2^{4} \cdot\left(2^{-1}\right)^{n-1} \\
& =2^{4} \cdot 2^{-n+1} \\
& =2^{4-n+1} \\
& =2^{5-n}<
\end{aligned}
$$

2.2.2 Consider $16+8+4+2+1=31$
i.e. $\mathrm{S}_{5}=31$
$\therefore S_{n}>31 \Rightarrow n>5<$
OR:
$S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}$ where $a=16 \quad \& \quad r=\frac{1}{2}$

$=32$
$\mathrm{Sn}_{\mathrm{n}}>31 \Rightarrow 32\left[1-\left(\frac{1}{2}\right)^{\mathrm{n}}\right]>31$
$\therefore 1-\left(\frac{1}{2}\right)^{n}>\frac{31}{32}$
$\therefore-\left(\frac{1}{2}\right)^{n}>-\frac{1}{32}$
$\times(-1)$
$\left(\frac{1}{2}\right)^{n}<\left(\frac{1}{2}\right)^{5}$
. $n>5<$
Note: It is acceptable to write: $n \geq 6$ because $n \in \mathbb{N}$
2.2.3 $S_{\infty}=\frac{a}{1-r}=\frac{16}{1-\frac{1}{2}}=\frac{16}{\frac{1}{2}}=32<$

Grade 12 Maths National Exemplar Memo: Paper 1
3.2 The first factors of each term:
$1 ; 5 ; 9 ; 13 ; .$. ; 81
is a linear sequence $\quad O R$: A.S.
$T_{n}=a n+b \quad \cdots \quad \therefore T_{n}=a+(n-1) d$, etc.
where $a=4$ and $b=T_{0}=-3$
. General term: $T_{n}=4 n-3$
The $\mathrm{n}^{\text {th }}$ term, $\quad \mathrm{T}_{\mathrm{n}}=81$
$4 n-3=81$
$\therefore 4 n=84$
$\therefore n=21$

- The second factors of each term:

2; 6; 10; 14; .
Each term is just 1 more than the above sequence

$$
\begin{aligned}
& \therefore T_{n}=4 n-2 \text { up to } n=21 \\
& \therefore \text { Sigma notation: } \sum_{n=1}^{21}(4 n-3)(4 n-2) \quad \begin{array}{l}
\text { This question } \\
\text { could have } \\
\text { been done } \\
\text { entirely by } \\
\text { inspection! }
\end{array}
\end{aligned}
$$

- FUNCTIONS AND GRAPHS [37]

4.1 $\mathrm{f}(x)=\frac{2}{x+1}-3$
4.1.1 y-int. :

Substitute $x=0$
then $\mathrm{y}=\frac{2}{0+1}-3=-1 \quad \ldots y=f(0)$
$(0 ;-1)<$
4.1.2 \quad-int.

Substitute $\mathrm{y}=0 \quad \ldots f(x)=0$
then $\quad 0=\frac{2}{x+1}-3$

$$
3=\frac{2}{x+1}
$$

$\therefore 3 x+3=2$
$\therefore 3 x=-1$
$\therefore x=-\frac{1}{3}$
$\left(-\frac{1}{3} ; 0\right)<$

4.2 $\mathrm{f}(x)=\mathrm{a} \cdot \mathrm{b}^{x}+\mathrm{q}$
4.2.1 $q=-3 \quad \ldots$ range: $y>-3$

Equation: $y=a \cdot b^{x}-3$

Substitute ($0 ;-2$):
$\therefore-2=a \cdot b^{0}-3$
$\therefore 1=\mathrm{a}$
\therefore Equation: $\mathrm{y}=\mathrm{b}^{x}-3$
Substitute $(1 ;-1)$:
$\therefore-1=\mathrm{b}^{1}-3$
$\therefore 2=\mathrm{b}$

Note:
There are 3 unknowns to be determined.
The order of the process is important: asymptote, y-intercept, then the other point.
\therefore Equation: $y=2^{x}-3<$

Maximum $=-2\left(-\frac{5}{4}\right)^{2}-5\left(-\frac{5}{4}\right)+3=\frac{49}{8}$
Turning point: $\left(-\frac{5}{4} ; \frac{49}{8}\right)<$

$$
\text { OR: } \begin{aligned}
\mathrm{f}(x) & =-2\left(x^{2}+\frac{5}{2} x\right. \\
& =-2\left[x^{2}-\frac{5}{2} x+\left(\frac{5}{4}\right)^{2}-\frac{3}{2}-\frac{25}{16}\right] \\
& =-2\left[\left(x-\frac{5}{4}\right)^{2}-\frac{49}{16}\right] \\
& =-2\left(x-\frac{5}{4}\right)^{2}+\frac{49}{8} \\
\therefore & \text { Turning point }\left(-\frac{5}{4} ; \frac{49}{8}\right)<
\end{aligned}
$$ tangent (g)

$\therefore \mathrm{f}^{\prime}(x)=\tan 135^{\circ}$
$-4 x-5=-1$
$\therefore-4 x=4$
$\therefore x=-1$
\& $f(-1)=-2(-1)^{2}-5(-1)+3$
$=-2+5+3$
= 6
$P(-1 ; 6)<$

Grade 12 Maths National Exemplar Memo: Paper 1
5.3 Equation of $\mathrm{g}: \mathrm{y}=\mathrm{a} x+\mathrm{q} \quad$ OR: Substitute the $\mathrm{a}=$ the gradient of $\mathrm{g}=-1$ gradient =-1 and

$$
\therefore y=-x+q
$$

Substitute $P(-1 ; 6)$:

$$
\begin{aligned}
& \text { the point }(-1 ; 6) \text { in } \\
& y-y_{1}=m\left(x-x_{1}\right)
\end{aligned}
$$ $y-6=-1(x+1)$

$6=-(-1)+q$
$\therefore y-6=-x-1$
$5=\mathrm{q}$
$y=-x+5<$
Eqn. of $g: y=-x+5<$
$\mathbf{d}>\mathbf{5}<\ldots$ - -intercept, d must be >5
6.1 Equation of $g: y=\sqrt{a x}$

If a point lies on a
$(8 ; 3)$ on $g \Rightarrow 4=\sqrt{a(8)}$
Square both sides: $\therefore 16=8 \mathrm{a}$ of the point satisfy the

$$
\therefore-4 x=5
$$

$$
\therefore x=-\frac{5}{4}
$$

5.2 At P, the gradient of $\mathrm{f}, \mathrm{f}^{\prime}(x)$, equals the gradient of the

See the sketches of $\begin{array}{ll}\text { Equation of } \mathrm{g}: \mathrm{y}=\sqrt{2 x} & \mathrm{See} \text { the sketches } \\ \therefore \text { Eqn. of } \mathrm{g}^{-1}: x=\sqrt{2 \mathrm{y}} \quad & \mathrm{g}^{-1} \text { below: }\end{array}$

$$
\begin{aligned}
\therefore \text { Eqn. of } \mathrm{g}^{-1}: \quad x & =\sqrt{2 y} \\
\therefore x^{2} & =2 y \\
\therefore y & =\frac{1}{2} x^{2} ; x \geq 0<
\end{aligned}
$$

$$
y=x-4
$$

It important to understand the reflections of the inverse functions, g and g^{-1}, in the line $\mathrm{y}=x$.
6.5 $\mathrm{h}(x)=\mathrm{g}(x) \Rightarrow x-4=\sqrt{2 x} \quad$... Note: $x-4 \geq 0$

$$
\begin{aligned}
\therefore(x-4)^{2} & =2 x \\
\therefore x^{2}-8 x+16 & =2 x \\
\therefore x^{2}-10 x+16 & =0 \\
\therefore(x-2)(x-8) & =0 \\
\therefore x=2 \text { or } x & =8
\end{aligned}
$$

BUT, for $x=2$: LHS $=\mathrm{h}(x)=-2$ and RHS $=\mathrm{g}(x)=+2$
Only $x=8 \quad \ldots$ See the sketch: The point (2;-4) and $y=8-4$ or $\sqrt{2(8)}=4 \quad$ cannot lie on g.

The point of intersection is $(8 ; 4)<$

FINANCE, GROWTH AND DECAY [16]

7.1
12% of the selling price $=\mathrm{R} 102000$
1% of the selling price $=$ R102 $000 \div 12$
$\therefore 100 \%$ of the selling price $=(\mathrm{R} 102000 \div 12) \times 100$
7.2 The balance of the selling price $=$ R748 000 (= the loan)

Method 1: Present value \quad This is the

$P_{v}=\frac{x\left[1-(1+\mathrm{i})^{-n}\right]}{i}$ quicker method!
where $\mathrm{P}_{\mathrm{v}}=\mathrm{R} 748000 ; x$?

$$
i=\frac{9 \%}{12}=\frac{0,09}{12} ; n=20 \times 12=240
$$

$$
\therefore x=\frac{748000}{A}
$$

$$
\simeq R 6729,25<
$$

7.3 The amount of interes

= The amount paid over 20 years - the original amount
$=(240 \times R 6729,95)-R 748000$
= R1 615 188-R748 000
= R867 188 <

© The 'present'

Method 1: Present value

After the $85^{\text {th }}$ instalment,
the number of instalments remaining $=240-85=155$
\& the balance of the loan, then
$=\frac{6729,95\left[1-\left(1+\frac{0,09}{12}\right)^{-155}\right]}{\frac{0,09}{12}}$

$$
748000=\frac{x\left[1-\left(1+\frac{0,09}{12}\right)^{-240}\right]}{\frac{0,09}{12}}=x \cdot \mathbf{A}^{k}\left(\begin{array}{l}
\text { STOre } \\
111,144954 \\
\text { in } \mathbf{A}
\end{array}\right]
$$

$=$ R615 509,74 <

Method 2: Future value

$$
=1411 \text { 663,73 STOre in } \mathrm{A}
$$

whereas:
The value of the annuity,

- The amount paid

$$
\mathrm{Fv}=\frac{6729,95\left[\left(1+\frac{0,09}{12}\right)^{85}-1\right]}{\frac{0,09}{12}}
$$

$=$ R796 153,96 STOre in B

The balance of the loan $=A-F_{v}=R 615509,77<$

$=A-F_{v}=\operatorname{R615} 509,77<$
the remaining amount to be paid

Grade 12 Maths National Exemplar Memo: Paper 1 7.5 The amount owed after month 89
$=$ The accrued amount for the months after month 85
$=R 615509,74\left(1+\frac{0,09}{12}\right)^{4}$
 maden were
$=$ R634 183,81 < (OR: R634 183,84 if the amount from Method 2 in 7.4 was used.
7.6

The present value of the annuity following month 89 must equal the amount owed at that stage.

$$
\therefore 1-\left(1+\frac{0,09}{12}\right)^{-n}=0,55957
$$

$$
\therefore 0,44042605=\left(1+\frac{0,09}{12}\right)^{-n}
$$

* $\therefore-\mathrm{n}=\frac{\log 0,44042605}{\log \left(1+\frac{0,09}{12}\right)}$

$$
=-109,744
$$

$\therefore n \simeq 110$ months <
$\mathrm{a}=\mathrm{b}$
$\Rightarrow x=\log _{\mathrm{b}} \mathrm{a}$ $\therefore x=\frac{\log a}{\log b}$

* OR:

$$
\begin{aligned}
& \log 0,44042605=\log \left(1+\frac{0,09}{12}\right)^{-n} \ldots \quad \begin{array}{c}
A=B \\
\log A=\log B
\end{array} \\
& \log 0,44042605=-n \log \left(1+\frac{0,09}{12}\right) \ldots \log A^{x}=x \log A \\
& \frac{\log 0,44042605}{\log \left(1+\frac{0,09}{12}\right)}=-n \\
& \text { etc. }
\end{aligned}
$$

DIFFERENTIAL CALCULUS [32]

8.1

$$
\begin{aligned}
\mathrm{f}(x) & =3 x^{2}-2 \\
\therefore \mathrm{f}(x+\mathrm{h}) & =3(x+\mathrm{h})^{2}-2 \\
& =3\left(x^{2}+2 x \mathrm{~h}+\mathrm{h}^{2}\right)-2 \\
& =3 x^{2}+6 x \mathrm{~h}+3 \mathrm{~h}^{2}-2
\end{aligned}
$$

$\therefore \mathrm{f}(x+\mathrm{h})-\mathrm{f}(x)=6 x \mathrm{~h}+3 \mathrm{~h}^{2}$ $\frac{f(x+h)-f(x)}{h}=6 x+3 h$

$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$=\lim _{h \rightarrow 0}(6 x+3 h)$
$=6 x<$

OR:
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$=\lim _{h \rightarrow 0} \frac{3(x+h)^{2}-2-\left(3 x^{2}-2\right)}{h}$
$=\lim _{h \rightarrow 0} \frac{\left.3\left(x^{2}+2 x h+h^{2}\right)-2-3 x^{2}+2\right)}{h}$
$=\lim _{h \rightarrow 0} \frac{3 x^{2}+6 x h+3 h^{2}-3 x^{2}}{h}$
$=\lim _{h \rightarrow 0} \frac{6 x h+3 h^{2}}{h}$
$=\lim _{h \rightarrow 0} 6 x+3 h$
$=6 x<$

You must choose one or the other of these layouts. Either you determine the components required for the definition of a derivative first and then apply the definition

OR: Start with the definition, remembering to repeat $\lim _{h \rightarrow 0}$ on every line until you find the limit in the last line.

The most important thing is to understand the definition.
8.2 $y=2 x^{-4}-\frac{1}{5} x$

$$
\begin{aligned}
\frac{\mathrm{dy}}{\mathrm{~d} x} & =2 \cdot-4 x^{-5}-\frac{1}{5} \cdot x^{0} \ldots \\
& =-8 x^{-5}-\frac{1}{5}<\ldots x^{0}=1 \\
{[} & \left.=-\frac{8}{x^{-5}}-\frac{1}{5}\right]
\end{aligned}
$$

$\mathrm{f}(x)=x^{3}-4 x^{2}-11 x+30$
$\mathrm{f}(2)=0 \Rightarrow x-2$ is a factor of $\mathrm{f}(x)<$

$$
\therefore \mathrm{f}(x)=(x-2)\left(x^{2} \ldots x-15\right) \ldots\left(-2 x^{2}-2 x^{2}=-4 x^{2}\right)
$$

$$
=(x-2)\left(x^{2}-2 x-15\right) \quad \ldots(-15 x+4 x=-11 x \checkmark)
$$

$$
=(x-2)(x-5)(x+3)
$$

$\mathrm{f}(x)=0 \Rightarrow x=-3$ or 2 or 5
Coordinates of x-intercepts: $(-3 ; 0),(2 ; 0) \&(5 ; 0)<$
9.3 At the stationary points: $\mathrm{f}^{\prime}(x)=0$

$$
\begin{aligned}
& \therefore 3 x^{2}-8 x-11=0 \\
& \therefore(3 x-11)(x+1)=0 \\
& \therefore x=\frac{11}{3} \text { or }-1
\end{aligned}
$$

$$
\begin{aligned}
f\left(\frac{11}{3}\right) & =\left(\frac{11}{3}\right)^{3}-4\left(\frac{11}{3}\right)^{2}-11\left(\frac{11}{3}\right)+30 \simeq-14,81 \\
\& \quad f(-1) & =(-1)^{3}-4(-1)^{2}-11(-1)+30=36
\end{aligned}
$$

Coordinates of stationary points: $(-1 ; 36)$ and $\left(\frac{11}{3} ;-14,81\right)$

Grade 12 Maths National Exemplar Memo: Paper 1
$9.5-1<x<\frac{11}{3}<\quad \ldots \quad$ for these values of x, the gradient of f is negative
10.1 After t hours
$D C=40 t ; \quad \therefore B C=100-40 t ; \quad B F=30 t$
$\mathrm{FC}^{2}=\mathrm{BF}^{2}+\mathrm{BC}^{2}$
$=(30 t)^{2}+(100-40 t)^{2}$
$=900 \mathrm{t}^{2}+10000-8000 \mathrm{t}+1600 \mathrm{t}^{2}$
$=2500 t^{2}-8000 t+10000$
$F C=\sqrt{2500 t^{2}-8000 t+10000}<$
10.2 Min FC occurs when FC^{2} is a minimum
$\therefore t=-\frac{b}{2 a}=-\frac{-8000}{2(2500)}$
OR: the derivative $\left(\right.$ of $\left.\mathrm{FC}^{2}\right)=0$
$5000 \mathrm{t}-8000=0$,
After $1 \mathbf{h r}$ and 36 min < etc.
10.3 $\operatorname{Min} F C=\sqrt{2500(1,6)^{2}-8000(1,6)+10000}$
$=60 \mathrm{~km}<$

PROBABILITY [16]

11.1 $\mathrm{P}(\mathrm{A}$ or B$)=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B}) \quad \ldots A$ \& B are mutually exclusive

$$
\begin{array}{lll}
\therefore 0,57 & =\frac{1}{2} \mathrm{P}(\mathrm{~B})+\mathrm{P}(\mathrm{~B}) & \ldots
\end{array} \begin{aligned}
& 2 P(A)=P(B) \\
& P(A)=\frac{1}{2} P(B)
\end{aligned}
$$

The Outcomes
11.2.1

A, P

A, Y

B, P
11.2.2 $\mathrm{P}(\mathrm{A}, \mathrm{Y})=\frac{1}{2} \times \frac{2}{5}=\frac{1}{5}$ < 11.2.3 $P($ Pink $)=P(A, P)+P(B, P)$

$$
\begin{aligned}
& =\frac{1}{2} \times \frac{3}{5}+\frac{1}{2} \times \frac{5}{9} \\
& =\frac{3}{10}+\frac{5}{18} \\
& =\frac{26}{45}<
\end{aligned}
$$

$12.1 \quad \underline{5 \text { choices }} 4$ choices $\underline{3 \text { choices }} \underline{2 \text { choices }} 1$ choice
The number of different 5-letter arrangements
$=5 \times 4 \times 3 \times 2 \times 1$
$=5$!
$=120<$
$12.2 \frac{2 \text { ways }}{1 \text { way }} 3$ ways 2 ways 1 way S or T

The number of 5-letter arrangements
starting ST \qquad or TS
$=2!\times 3!$
The PROBABILITY of this
$=\frac{2!\times 3!}{120} \quad \ldots P(E)=\frac{n(E)}{n(S)}$
$=\frac{1}{10}<$

