

(®)

ABOUT TAS

WHO is The Answer Series?

O Family-run company with a focus on SA education
O Creators of learner-friendly study guides
O Written for high school learners and teachers
©. Proven track record of over 45 years
\bigcirc Authors are subject specialists

The

Answer
Series

What does TAS offer in Mathematics?

Grade 8-9

O Gr 8 Maths 2-in-1
O Gr 9 Maths 2-in-1

Maths Companion Workbooks and Answer Books

O Gr 8 Learner Workbook 1O Gr 9 Learner Workbook 1
O Gr 8 Learner Workbook 2
O Gr 9 Learner Workbook 2
O Gr 8 Answer book
O Gr 9 Answer book

SI Units \& Conversions

Small unit	\Rightarrow big unit:	\div	
Big unit	\Rightarrow	small unit:	\times

Perimeter

Area $=$ side \times side
$=(\text { side })^{2}$
$\therefore \mathbf{A}=\mathbf{s}^{2}$

Area (A)

The surface enclosed by the boundary lengths of a 2D shape.

Triangle

Circle

$r=$ radius
$\mathrm{d}=$ diameter $=2 r$

Perimeter
$=$ side $_{1}+$ base + side $_{2}$
$\therefore \mathbf{P}=\mathbf{a + b + c}$

$$
\begin{aligned}
& \text { Area }=\frac{1}{2} \text { base } \times \perp h \\
& \therefore A=\frac{1}{2} b \times \perp h \\
& \text { OR Area }=\frac{\text { base } \times \text { height }}{2} \\
& \therefore \quad \mathbf{A}=\frac{\mathbf{b} \times \mathbf{h}}{2}
\end{aligned}
$$

Circumference $=2 \times \pi \times$ radius OR $=\pi \times$ diameter

$$
\begin{aligned}
& \text { (where } \pi=\frac{22}{7} \text { or } 3,14 \text {) } \\
& \therefore \quad \mathbf{C}=\mathbf{2} \pi \mathbf{r} \\
& \text { OR } \mathbf{C}
\end{aligned}
$$

Area $=\pi \times(\text { radius })^{2}$
$\therefore \mathbf{A}=\pi \mathbf{r}^{2}$

$$
\begin{aligned}
& \text { of 2D lengths, } \\
& \text { version factor) }{ }^{\mathbf{2}}
\end{aligned}
$$

ys check ie same

Solving proble Area and Pe

Exercise 16.2

1. The area of the rect alongside is $48 \mathrm{~cm}^{2}$

Determine the valu
2.

5. The diagram below shows three circles, each with a diameter of 12 cm .

Each vertex of the triangle

 is at the centre of a circle.

What is the perimeter of the triangle?
7. The Yin-Yang symbol below is made up of a black and a white section. The black teardrop shape is given as a sketch with dimensions.

Determine the perimeter of this teardrop shape. Round the answer off to two decimal places.

Find algebraic expressions for:
2.1 The area of the rectangle.
(3)
2.2 The perimeter of the rectangle.
(3)
2.3 If the area of the rectangle is $60 \mathrm{~cm}^{2}$, find the value of x.
(4)
. If the area of a Compact Disc (CD) is $10568 \mathrm{~mm}^{2}$, calculate the radius of the $C D$. (Ignore the hole in the middle.)

(4)
4. A circular rotating water spray covers an area of $12 \mathrm{~m}^{2}$. How far away from the spray would you have to stand if you don't want to get wet? Round off your answer to the nearest metre.

6.1 Name the quadrilateral PQRS, giving a reason for your answer.
(2)
$6.2 \quad \hat{\mathrm{~T}}_{1}=$ \qquad
Give a reason for your answer.
(2)
6.3 If $\mathrm{PT}=8 \mathrm{~cm}$ and $\mathrm{QS}=12 \mathrm{~cm}$, calculate the length of $P Q$ giving a reason.
6.4 Now, if TR = 2PT, calculate the perimeter of PQRS to the closest cm .
6.5 Calculate the area of quadrilateral PQRS

The length and breadth are given in the diagram.
What is the value of x in the diagram ?
9. The radius of a car's wheel is 42 cm .

What distance, in kilometres, has the car travelled after 2000 revolutions of the wheel?
10.

$E F=2 E H(E F$ is twice the length of $E H)$
If the perimeter of EFGH is 30 cm , calculate the length of FG. (Let EH be x)

Remember: NO CALCULATOR

$$
\text { 3.1.2 } \quad 1 \frac{5}{16} \div 2 \frac{11}{12}
$$

$$
=\frac{21}{16} \div \frac{35}{12}
$$

$$
=\frac{321}{16_{4}} \times \frac{12^{3}}{35_{5}}
$$

2.160

$$
\begin{aligned}
& 10=2 \times 5 \text { and } 12=2^{2} \\
& \therefore \quad L C M=2^{2} \times 3 \times 5 \\
& \text { OR } 10,20,30,40,50,6 \\
& 12,24,36,48,60,7
\end{aligned}
$$

$$
=\frac{3 \times 3}{4 \times 5}
$$

$$
=\frac{9}{20}<
$$

2.2 Note: No calculator allowed!

$$
\sqrt{169}=13 \quad \ldots 13^{2}=169
$$

$\therefore \sqrt{163}<13$
$\therefore 13,2$ is bigger than $\sqrt{163}<$
$2.3 \sqrt{8}<\sqrt{9}=3$ and $\sqrt{80}<\sqrt{81}=9$
\therefore The whole numbers between $\sqrt{8}$ and 3; 4; 5; 6; 7; 8
\therefore The number of whole numbers $=6$ the q

$$
\text { 3.1.1 } \begin{aligned}
& 1 \frac{1}{2}+3 \frac{2}{3} \\
= & \frac{3}{2}+\frac{11}{3} \\
= & \frac{9+22}{6} \\
= & \frac{31}{6} \\
= & 5 \frac{1}{6}<
\end{aligned}
$$

A: $\frac{1}{3}+\frac{1}{6}=\frac{2}{6}+\frac{1}{6}=\frac{3}{6}=\frac{1}{2} \neq \frac{1}{9}$
B: $\frac{1}{6}-\frac{1}{4}=\frac{2}{12}-\frac{3}{12}=-\frac{1}{12} \neq \frac{1}{2}$
C: $\frac{1}{2} \times \frac{1}{6}=\frac{1}{12}=12^{-1}$
D: $\frac{1}{10} \div \frac{1}{5}=\frac{1}{10} \times \frac{5}{1}=\frac{1}{2}=2^{-1} \checkmark$

C and D are true
4.1 The number of cats $=\frac{3}{2+3+30}$ of 385

$$
\begin{aligned}
& =\frac{3}{135} \times \frac{385^{11}}{1} \\
& =\frac{3 \times 11}{1 \times 1} \\
& =33<
\end{aligned}
$$

$4.2 \begin{gathered}\text { Hint: } \\ \text { Draw a diagram! }\end{gathered}$

mber of potatoes peeled

in the $1^{\text {st }} 4$ minutes: $4 \times 3=12$
... Matthew
\& thereafter:
$3+5=8$ per minute
. . Matthew \& Charles
for the remaining
$44-12=32$ potatoes
$\therefore 4$ minutes
$\frac{32 \text { potatoes }}{8 \text { per min }}$
孚
Number of potatoes Charles peeled $=4 \times 5=20<$

$$
\begin{aligned}
& \times \frac{y}{z}=\frac{2}{3} \times \frac{7}{5} \ldots \begin{array}{c}
\text { Note the possibility } \\
\text { of 'removing' } y \\
\text { by cancelling. }
\end{array} \\
& \therefore \frac{x}{z}=\frac{14}{15} \\
& \therefore \frac{z}{x}=\frac{15}{14}<\begin{array}{c}
\text { If fractions are equal then } \\
\text { their inverses are equal. }
\end{array}
\end{aligned}
$$

Copyright © The Answer Series: Photocopying

A Summary of the Laws of Exponents using algebra (letters)

$a^{m} \times a^{n}=a^{m+n}$

$a^{m} \div a^{n}=a^{m-n}$
$\left(a^{m}\right)^{n}=a^{m n}$
$(a \times b)^{n}=a^{n} \times b^{n}$
$a^{0}=1$
$a^{-n}=\frac{1}{a^{n}}=\left(\frac{1}{a}\right)^{n}$
$5.13 \sqrt{\frac{4 a^{3}}{a^{9}}}$
$5.14\left(\frac{5 x^{-1}}{2}\right)^{-1} \cdot \sqrt{25 x^{4} y^{-2}}$
$5.15 \sqrt{\frac{\left(a b^{2}\right)^{3}}{a(-4 c)^{2}}}$

$5.16 \frac{\left(3 x^{5} y^{-3}\right)^{2}}{-6 y^{5}} \times \frac{2 x^{-4}}{x^{0}}$
$5.17 \frac{2 x y^{2}}{3 \mathrm{~m}} \div \frac{4 \mathrm{y}^{2}}{9 x \mathrm{~m}}$
$5.18 \frac{3 x}{y^{2} z^{3}} \div \frac{9 x^{2}}{2 y z^{4}}$
$5.19 \frac{\left(2 a^{2}\right)^{4}}{4 a^{4}} \times \frac{\left(a^{2} b^{3}\right)^{2}}{\left(b^{2} c\right)^{3}}$

$5.2 \quad-5^{2} \div \sqrt[3]{-1}$

$5.3 \sqrt{3^{2}+3^{1}+3^{0}+3^{-1}+3^{-2}}$
$5.4 \sqrt[3]{27}-\sqrt{49}+4$
$5.5 \sqrt{9+16}$
$5.6 \sqrt{\frac{18}{2}}-(-2)^{3}$
$5.7 \sqrt[3]{\frac{27}{8}}+\sqrt{2 \frac{1}{4}}$
Simplify, leaving the answer with positive exponents where applicable:

$$
\begin{array}{llll}
5.8 & \sqrt{36 x^{36}+64 x^{36}} & 5.9 & \sqrt{9 x^{10}+16 x^{10}} \\
5.10 & \sqrt{144 a^{6} b^{10}} \cdot\left(-2 a b^{2}\right) \\
5.11 & \sqrt{9(a+2 b)^{2} x^{4}} & 5.12 & \sqrt{169 x^{14} y^{22}}
\end{array}
$$

(3)
(4)
(3)
(1)
(4)
(4)
$5.24 \frac{x^{4} y}{y^{0}} \div \frac{x y^{3}}{x^{2}} \div \frac{x^{2} y^{3}}{x^{-3} y^{4}}$
$5.25 \frac{\sqrt{49 a^{6} b^{-2}} \cdot\left(3 a^{2} b^{-1}\right)^{-2}}{2 a^{0} b^{-3}}$
6.1 Determine which of the following has the largest value (you may use a calculator):

$$
\left(\frac{1}{7}\right)^{-7} \quad 7^{\frac{10}{7}} \quad \sqrt[7]{777777} \quad 777,777^{\frac{1}{7}} \quad 0,7^{-0,7}
$$

(6)
(6)
(6)
(4)
(2)
(2)
(3)
(4)
(3)
(3)
(5)
3)
\checkmark, without the use of a calculator,
ermine which is larger: 2^{-5} or 5^{-2} ?
d off each of the following to three dec. places.
$\tau \times \sqrt[5]{237} \quad 7.2\left(\frac{1}{7}\right)^{-7} \times 0,135$
ss the number 32 as a power with
e of 4. [Hint: Remember: $\left.2^{2}=4\right]$
(2)
ach of the following questions,
options have been given for the answer.
one of the options provided is correct. th case, write down the correct letter.
(10)
$\frac{x^{2}}{y^{2}}=\ldots$
A: $\frac{x}{y}$
B: $\frac{y}{x}$
C: $x-y$
D: cannot be simplified
A: $6 x^{8}$
B: $6 x^{4}$
C: $18 x^{8}$
D: $18 x^{4}$
$9.3 \quad \sqrt{\frac{64 a^{16}}{b^{36}}}=\ldots$

A: $\frac{8 a^{8}}{b^{18}}$
B: $\frac{8 a^{4}}{b^{6}}$
$C: \frac{32 a^{8}}{b^{18}}$
$D: \frac{64^{2} a^{32}}{b^{72}}$
9.4 If $p=-\frac{1}{2}$ then $-p^{2}=\ldots$
A: $\frac{1}{4}$
B: $-\frac{1}{4}$
C: -1
D: 1
$9.5 \quad a^{-1}+b^{-1}=\ldots$
A: $\frac{1}{a+b}$
B: $\frac{1}{a b}$
C: $-a-b$
D: $\frac{1}{a}+\frac{1}{b}$

QUADRILATERALS

All you need to know!

'Any' Quadrilateral

The arrows indicate various 'pathways' from 'any' quadrilateral to the square the 'ultimate quadrilateral'). These pathways, which combine logic and fact, are essential to use when proving specific types of quadrilaterals.
See how the properties accumulate as we move from left to right, i.e. the first quad has no special properties and each successive quadrilateral has all preceding properties.

DEFINITION:
Quadrilateral with 1 pair of opposite sides II

THE DIAGONALS

- cut perpendicularly
- one diagonal bisects the other diagonal, the opposite angles and the area of the kite

A Rectangle

The Square

Properties:

's all been said 'before'!
re a square is a rectangle, hombus, a parallelogram, te, ... ALL the properties hese quadrilaterals apply.

Area

$=\frac{1}{2}$ product of diagonals (as for a kite)
or
base \times height (as for a parallelogram)

THE DIAGONALS

- bisect one another PERPENDICULARLY
- bisect the angles of the rhombus
- bisect the area of the rhombus

Note:

$2 x+2 y=180^{\circ}$
$\angle s$ of Δ or
co-int. $\angle^{s} ; \|$ lines
$\Rightarrow x+y=90^{\circ}$
co-mti. < , \|tmes

What does TAS offer in Mathematics?

Grade 10-12

O Gr 10 Maths 3-in-1
O Gr 11 Maths 3-in-1
O Gr 11 Maths P \& A
O Gr 12 Maths P \& A
O Gr 12 Maths 2-in-1
O Gr 12 Maths PAST PAPERS TOOLKIT

But $x<0$ in the second quadrant
4.1.1 $\sin C=\frac{A B}{A C<}$
$4.1 .2 \boldsymbol{\operatorname { c o t }} A=\frac{A B}{B C}$
Note: $\tan A=\frac{B C}{A B} ; \cot A=\frac{1}{\tan A}$
4.2 The expression

$$
\begin{aligned}
& =\frac{\frac{\sqrt{3}}{2} \times \frac{1}{\sqrt{3}}}{\sqrt{2}} \\
& =\frac{1}{2} \times \frac{1}{\sqrt{2}} \\
& =\frac{1}{2 \sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} \quad \ldots \text { The denominator must } \\
& =\frac{\sqrt{2}}{4}<\ldots \sqrt{30^{\circ}} \\
& =\ldots \sqrt{2} \times 2
\end{aligned}
$$

$\therefore \cos \theta=\frac{-5}{13}=-\frac{5}{13}<\ldots \cos \theta=\frac{x}{r}$

$$
5 \cos x=3
$$

$$
x=60^{\circ}<\quad \ldots \cos ^{-1}\left(\frac{1}{2}\right)=
$$

$$
\text { JK̂D }=8^{\circ}<\ldots \text { alternate } \angle ' s ;| | \text { lines }
$$

$$
\ln \triangle \mathrm{JDK}: \quad \frac{\mathrm{DK}}{5}=\cot 8^{\circ} \quad \ldots=\frac{1}{\tan 8^{\circ}}
$$

$$
\times 5) \quad \therefore \quad \mathrm{DK}=\frac{5}{\tan 8^{\circ}}
$$

$=35,5768 \mathrm{~m} \mathrm{~km}$
= 35 576,8 metres
≈ 35577 metres <
correct to the nearest metre
5.2.3 DS $=$ DK - SK

$$
=35,58 \mathrm{~km}-8 \mathrm{~km}
$$

$$
=27,58 \mathrm{~km}<
$$

5.2.4 $\tan \mathrm{JSD}=\frac{5}{27,58}$

$$
\therefore \text { JŜD } \approx 10,3^{\circ}<\ldots \tan ^{-1}\left(\frac{5}{27,58}\right)=
$$

correct to 1 dec. place
6.1.1

6.1.2 $y=-2 \tan x<$
$\begin{aligned} 6.2 .1 \quad \mathrm{a}=4<\quad \mathrm{g}(x)=\mathrm{a} \sin x & \Rightarrow \mathrm{~g}\left(90^{\circ}\right)=\mathrm{a} \sin 90^{\circ} \\ & \Rightarrow 4=a\end{aligned}$
6.2.2 The range of h :
$-2 \leq y \leq 6<$
. the values of y

FACTORISING - SOME GOOD ADVICE

How many terms do I have? The number of terms determines my options.

$\begin{array}{\|l\|} \text { NO. OF } \\ \text { TERMS } \end{array}$	OPTIONS	
2 terms	Always look out for a common factor FIRST!	The difference of two squares OR The sum of two cubes or the difference of two cubes
3 terms		Trinomial
4 terms	Grouping watch out for switchrounds!	$\begin{aligned} & \text { 2-2 - for common 'brackets', or } \\ & 3-1 \text { or } \\ & 1-3 \text { - leading to difference of squares } \end{aligned}$
5 terms		$\begin{aligned} & \text { 3-2 or } \\ & 2-3-\text { for common 'brackets' } \end{aligned}$
6 terms		3-3- for common 'brackets' or difference of squares or 2-2-2-for common 'brackets'

VE FACTORISATION TESTS

| $x^{2}-x-12$ | 2. | $8 \mathrm{a} x-12 \mathrm{ay}-10 \mathrm{x}+15 \mathrm{y}$ | 3. $\quad(x+5)(x+3)+\mathrm{k}(3+x)$ | $(2)(4)(2)$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{p}^{2}-14 \mathrm{p}-32$ | 5. | $4 \mathrm{~m}-\mathrm{pm}+8-2 \mathrm{p}$ | 6. $12 x^{2}-19 x \mathrm{y}-21 \mathrm{y}^{2}$ | $(2)(2)(2)$ |
| $(x-\mathrm{y})^{3}-3(x-\mathrm{y})^{2}$ | 8. | $2 \mathrm{a}^{2}-18$ | 9. $28 \mathrm{ab}+4 \mathrm{a}^{2}-15 \mathrm{~b}^{2}$ | $(3)(2)(2)$ |
| $\mathrm{ac}+\mathrm{yd}-\mathrm{ad}-\mathrm{yc}$ | 11. | $3 \mathrm{k}(2 \mathrm{~m}-3 \mathrm{n})+5 \mathrm{t}(3 \mathrm{n}-2 \mathrm{~m})$ | 12. $(\mathrm{a}-\mathrm{b})^{2}-49$ | $(2)(3)(2)$ |
| $12 x^{3}+11 x^{2}-x$ | 14. $x^{6}-64 \mathrm{y}^{6}$ | 15. $x(x-1)(x-2)-(x-1)^{2}$ | $(3)(3)(4)$ | |
| $1-16 \mathrm{a}^{16}$ | 17. $-6 \mathrm{~m}^{2}+11 \mathrm{~m}+10$ | 18. $4 x-\mathrm{ax}+\mathrm{ay}-4 \mathrm{y}$ | (4)(2)(2) | |

Write down the simplest expression (in factorised form) into which the expressions in questions $6,7 \& 18$ can divide (i.e. the lowest common multiple).

Calculate the value of $109^{2}-9^{2}$ in the shortest possible way, without using a calculator. (3) [50]

$p a+p b+q a+q b$	2.	$x^{2}+5 x+6$	3.	$4 x^{2}-9$
$5 a t+9+3 a+15 t$	5.	$4 x^{2}-20 x+25$	6. $5-20 a^{2}$	$(2)(1)(1)$
$3 a c+2 b c-2 b d-3 a d$	8.	$3 y^{2}+15 y-108$	9. $a c+6 b-3 a b-2 c$	$(3)(2)(2)$
$p^{3}-8$	11.	$52^{2}-50^{2}$ (evaluate)	12. $132 x^{2}+96 x y-36 y^{2}$	(2)(3)(3)
$9 x^{2}-5 y-3 x-25 y^{2}$	14. $8 m^{2}-50 m n+33 n^{2}$	15. $x^{4}-x^{3}+x-1$	(3)(3)(3)	
$12 m b+9 a^{2}-4 m^{2}-9 b^{2}$	17. $x^{2}-2 x y-a^{2}+y^{2}$	18. $k^{4}-37 k^{2}+36$	(3)(3)(3)	
$16(2 a+b)^{2}-9(a-2 b)^{2}$			(6) $[50]$	

$x^{2}-25 x y+144 y^{2}$	2.	$x^{2}-24 x y+144 y^{2}$	3. $2 a c-3 a d-2 b c+3 b d$	$(2)(2)(3)$
$\mathrm{k}(\mathrm{a}-\mathrm{b})+\mathrm{n}(\mathrm{b}-\mathrm{a})$	5.	$122^{2}-120^{2}$ (evaluate)	6. $2 a^{2}-2 a-12$	(2)(3)(3)
$\mathrm{a} x-\mathrm{b}^{2}-\mathrm{b} x+\mathrm{ab}$	8.	$\mathrm{a}^{2} x^{2}+5 \mathrm{a} x-24$	9. $x^{2}-2 \frac{1}{4}$	(3)(2)(3)
$20 \mathrm{~m}^{2} \mathrm{n}+62 m n^{2}-28 \mathrm{n}^{3}$	11. $a x^{2}+3 b y^{2}-3 \mathrm{~b} x y-a x y$	12. $125 x^{3}+y^{3}$	(3)(3)(2)	
$20 x^{2}-45 y^{2}$	14. $3 a^{3}+12 a^{2} b+9 a b^{2}$	15. $x^{2}-2 x+2 y-y^{2}$	(3)(3)(3)	

$20 x^{2}-45 y^{2} \quad$ 14. $3 a^{3}+12 a^{2} b+9 a b^{2} \quad$ 15. $x^{2}-2 x+2 y-y^{2} \quad$ (3)(3)(3)
Factorise $a^{2}-b^{2}$ and then write down the factors of $\left(2 x^{2}-4 x+1\right)^{2}-\left(x^{2}-3 x+3\right)^{2}$ in the simplest form

$2 x^{2}-8$	2.	$a^{2}-b^{2}+a-b$	3. $x^{2}-12 x+36$	(3)(3)(2)
$\left(r+\frac{1}{r}\right)^{2}-\left(r-\frac{1}{r}\right)^{2}$	5.	$10 x^{2}+38 x y-8 y^{2}$	6. $2 x^{3}-x^{2}+4-8 x$	(3)(3)(3)
$40 a p^{2}+82 a^{2} p+40 a^{3}$	8.	$12 a b+8 b^{2}-6 a f-4 b f$	9. $-3 x^{2}+21 x-30$	(3)(3)(3)
$3-3(x-y)^{2}$	11. $x^{2}+8+\frac{16}{x^{2}}$	12. $k\left(x^{3}-1\right)-k(x-1)^{3}$	$(3)(2)(5)$	
$4 p^{2}(3 p-1)-5 p$	14. $x^{2}-y^{2}+4 x+4$	15. $3 a^{3}-24 b^{3}$	(4)(4)(3)	

If $\mathrm{P}=3 x+2$ and $\mathrm{Q}=2 x-1$, express $\mathrm{P}^{2}-2 \mathrm{PQ}+\mathrm{Q}^{2}$ in terms of x

Copyright © The Answer Series: Photocopying of this material is illegal

Worked example

Solve for x and $y: 2 x+3 y=-1 \quad \ldots$ (1)

$$
\begin{equation*}
3 x-6 y=-12 \quad . . \text { (2) } \tag{2}
\end{equation*}
$$

We first need to alter equation number (1) so that adding it to or subtractins from equation number (2) will eliminate one of the variables:

(1) $\times 2$:	$4 x+6 y=-2$... (3)	Now, observe the cot of y in (2) and (3)
(2)+(3): $\quad \therefore 7 x=-14 \quad \ldots \mathrm{y}$ has been eliminated!			
Subst. $x=-2$	$\therefore x=-2$ $\therefore \quad-4+3 y=-1$		OR: Eliminate - see belo
$\therefore 3 y=3$			
	$\begin{array}{r} \therefore y=1 \\ (-2 ; 1)<\ldots \end{array}$		an ORDERED PAIR st, then y second! od way to give the so equations with 2 unkn

CHECK THIS ANSWER BY substituting the values into the equations (1) and (2) to see whether they hold true!

We could've gone for eliminating \boldsymbol{x} (instead of y):
(1) $\times 3$:
$6 x+9 y=-3$
(2) $\times 2$:
$6 x-12 y=-24$
(3) - (4):
$\therefore 21 y=21$
\boldsymbol{x} has been eliminated
Subst. $y=1$ in (1):
$\begin{aligned} \therefore y & =1 \\ 2 x+3 & =-1\end{aligned}$
$\therefore 2 x=-4$
$\therefore x=-2$, etc.

Can you solve these equations?

$$
\begin{align*}
a r^{6} & =162 \tag{1}\\
a r^{2} & =2
\end{align*}
$$

Let us try addition . . .
(1) $+(2)$:

$$
a r^{6}+a r^{2}=162+2
$$

$$
\mathrm{a}\left(\mathrm{r}^{6}+\mathrm{r}^{2}\right)=164 \text { and now what??? } \quad \text { no good! }
$$

Addition and subtraction don't work, do they! What else can we try? Equations can also be multiplied or divided:

because,if $\quad \mathbf{a}$ $=\mathbf{b}$ and $\quad \mathbf{c}=\mathbf{d}$	
then a.c $=\mathbf{b} . \mathrm{d}$	and $\frac{\mathbf{a}}{\mathbf{c}}=\frac{\mathbf{b}}{\mathbf{d}}$

Which of these is best to use in our example to eliminate one of the variables?

Answer

(1) $\div(2):$

$$
\begin{aligned}
\frac{a r^{6}}{a r^{2}} & =\frac{162}{2} \\
\therefore r^{4} & =81 \\
\therefore r & = \pm 3
\end{aligned}
$$

Subst. $r= \pm 3$ in (2):

$$
\begin{equation*}
a \times 9=2 \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\therefore a=\frac{2}{9}< \tag{4}
\end{equation*}
$$

... Division seems to be the way to eliminate a
Even though this sum
looks different (and is!)
the LOGIC is the same!

$3 p-q=10$
$3 x+4 y=11$
$y=3-x$
6. $\frac{y}{2}+1=\frac{x}{5}$
7. $\frac{x+y}{2}=7-\frac{2 x-y}{3} \ldots$ (
and $\frac{1}{4} x+\frac{1}{2}=\frac{1}{3} y$
and $\frac{x-y}{4}-\frac{x+y}{3}+4 \frac{1}{2}=0$
8. The length of a rectangle is a mm and the breadth is bmm . The area of the rectangle is unchanged if the length is increased by 6 mm and the breadth is diminished by 2 mm . The area is also unchanged if the length is decreased by 6 mm and the breadth is increased by 3 mm . Find the length and breadth of the original rectangle.

The SIGNS of the trig ratios IN A FLASH!

$\sin \theta=\frac{\mathbf{y}}{r} \leftarrow$ and \mathbf{y} is positive in I and II
$\therefore \boldsymbol{\operatorname { s i n }} \theta$ is POSITIVE in quadrants $1 \& 2$
(and negative in $3 \& 4$)

$\cos \theta=\frac{\mathbf{X}}{r} \leftarrow$ and \mathbf{x} is positive in I and $I V$
$\boldsymbol{\operatorname { c o s }} \theta$ is POSITIVE in quadrants $1 \& 4$
(and negative in 2 \& 3)

'PULL A CURTAIN FOR COS'
$\tan \theta=\frac{\mathbf{y}}{\mathbf{x}} \leftarrow$
and $\mathbf{x} \& \mathbf{y}$ have the same sign in I and III
$\boldsymbol{\operatorname { t a n }} \theta$ is Positive in quadrants $1 \& 3$
(and negative in 2 \& 4)
$\boldsymbol{\operatorname { t a n }} \theta$

Apparently, this is THE BMW SYMBOL!!!

NO MORE CAST RULE!!!

The trig ratios of 90° and multiples of 90°

$=0 ; y=-4 ; r=4$

$$
x=5 ; \quad y=0 ; r=5
$$

Vote: The results for 0° and 360° are the same.

SUMMARY
$\left.\begin{array}{ccccccccc}\theta: & 0^{\circ} & \longrightarrow & 90^{\circ} & \longrightarrow & 180^{\circ} & \longrightarrow & 270^{\circ} & \longrightarrow \\ \hline\end{array}\right] 60^{\circ}$

Trigonometric graphs

We will learn how to sketch the graphs $y=\sin \theta, y=\cos \theta$ and $y=\tan \theta$ for $0^{\circ} \leq \theta \leq 360^{\circ}$. We will use the critical values of these ratios to make it easy. But first, some terminology .

Terminology

The sine and cosine graphs are wave-shaped.

- The amplitude of a WAVE is the deviation from its centre line:
- The period of a graph is the number of degrees spanning a FULL WAVE.
- The range is the set of all the possible y-values.

Our investigations of the trig ratios have shown us that the range of values of sines and cosines is very small - only between $\mathbf{- 1}$ and 1 .
We write: - $\mathbf{1} \leq \boldsymbol{\operatorname { s i n }} \theta \leq \mathbf{1}$ and $\mathbf{- 1} \leq \boldsymbol{\operatorname { c o s }} \theta \leq \mathbf{1}$ for all values of θ !
By contrast, the range of tan values is from $-\infty$ to $+\infty$!

Venn Diagrams

A graphical method to visually represent the outcomes of two or more different events (by means of circles); together with common elements of the events (by means of overlapping circles); as well as the sample space of all the events (by

Sample Space \& Events

Possible Venn Diagram layout:

Sample Space

- the set of all possible outcomes

Event B

- an event which contains all the possible outcomes of B

Common elements (shaded)

Event A

- an event which contains all the possible outcomes of A

Worked Example 1

Set up a Venn Diagram to illustrate the following:

- A sample space from 1 to 10 (whole numbers only)
- Event A: the factors of 8
- Event B: the multiples of 2

Answer

Event A: Factors of $8=\{1 ; 2 ; 4 ; 8\}$

$$
\therefore \mathrm{n}(\mathbf{A})=4 \text { elements }
$$

Event B: Multiples of $2=\{2 ; 4 ; 6 ; 8 ; 10\}$ $\therefore \mathrm{n}(\mathbf{B})=5$ elements

Common elements $=\{2: 4: 8\}$

Remember!

* n(event) = number of favourable outcomes in the event
* $P($ event $)=$ probability of the number of favourable outcomes $n(E)$ divided by the total number of elements in the sample space $n(S)$
i.e. $P(E)=\frac{\text { the number of favourable outcomes that exist } n(E)}{\text { the total number }}$ he total number of possible outcomes $n(S)$
* The sum of the probabilities in the Venn diagram must be 1 or 100%

Mutually Exclusive / Disjoint Events

- contains all the possible outcomes of A

Event B

- contains all the possible outcomes of B

Events A \& B are . . .

Mutually exclusive

- the events do not overlap
\therefore they have no common elements

Given that $\mathbf{S}=\{1 ; 2 ; 3 ; 4 ; 5 ; 6\}$ and that event \mathbf{A} is all the even numbers and event \mathbf{B} is all the odd numbers:
(a) Draw a Venn Diagram to illustrate the situation.
(b) Are these events \mathbf{A} and \mathbf{B} mutually exclusive? Give a reason for your answer.

Answers

(a)
\mathbf{s}
(b) Yes, these events are mutually exclusive as an even number can never be an odd number.

Checklist: The Drawers of Tools

Consider 4 'drawers' of tools - all BASIC FACTS. Use these to analyse the sketches, to reason, calculate, prove

Distance, Midpoint \& Gradient

For any two fixed points, $P\left(x_{1} ; y_{1}\right) \& Q\left(x_{2} ; y_{2}\right)$

Note
Vertical length $Q R=y_{2}-\mathbf{y}_{1}$
Horizontal length $P R=\mathbf{x}_{\mathbf{2}}-\mathbf{x}_{\mathbf{1}}$
θ is the angle of inclination of the line $P Q$
$\tan \theta=\frac{\text { opposite }}{\text { adjacent }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

1 Distance PQ
$P Q^{2}=\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}$

The Angle of Inclination of a line

The \angle of inclination of a line is the \angle which the line makes with the positive direction of the x-axis.
\therefore Given α or β, one can find the gradient: ... a number
Or, given the gradient, one can find α or β : ... an angle (measured in degrees)

Equations of lines

0. deanimmincase I, case 2, and Case 3 on page 5.9

- Standard forms
- General: $\mathbf{y}=\mathbf{m x}+\mathbf{c}$ or $\mathbf{y}-\mathbf{y}_{1}=\mathbf{m}\left(\mathbf{x}-\mathbf{x}_{1}\right)$
- $\mathbf{y}=\mathbf{m x} \quad \ldots$ when $\mathrm{c}=0 \quad \ldots$ lines through the origin
- $\mathbf{y}=\mathbf{c} \quad .$. when $m=0 \quad$... lines $\| x$-axis
- $\mathbf{x}=\mathbf{k}$ lines || y-axis

Finding the equation of a line: Special focus

- through 2 given points . . . find m first

- through 1 point and $\|$ or \perp to a given line

Y-cuts and X-cuts: Put $x=0$ and $\mathrm{y}=0$, respectively.
Point of intersection of 2 graphs:
Solve the equations of the graphs simultaneously.
If a point lies on a line, the equation is true for it, and, vice versa
If a point satisfies the equation of a line, the point lies on the line.
e.g. If a line has the equation $y=x+1$, then all points on the line can be represented by $(x ; x+1)$.
$A B\left|\mid C D \Leftrightarrow m_{A B}=m C D\right.$

- $\mathrm{AB} \perp \mathrm{CD} \Leftrightarrow \mathrm{m}_{\mathrm{AB}}=-\frac{1}{m_{\mathrm{CD}}} \quad \ldots \mathrm{m}_{\mathrm{AB}}=-\frac{1}{m_{\mathrm{CD}}}$ also means: $\mathrm{m}_{\mathrm{AB}} \times m_{\mathrm{CD}}=-1$
- A, B and C are collinear points $\Leftrightarrow m_{A B}=m_{A C} ; \quad m_{A B}=m_{B C} ; \quad m_{A C}=m_{B C}$

EXERCISE 9.6: Mixed Exercise
Answers on page A9.9

Q1 to Q8: Without tangents

1. Determine, with reasons, the value of x :

2.1 O is the centre of the circle. $x=40^{\circ}$ Determine, with reasons, the size of \hat{Q}_{1}, \hat{B} and \hat{A}

$2.2 \mathrm{M}, \mathrm{P}, \mathrm{S}$ and T are points on a circle with centre 0 .
PT is a diameter.
MP, MT, MS and OS are drawn. $\hat{\mathrm{M}}_{1}=53^{\circ}$.

Determine, with reasons, the size $\hat{\mathrm{O}}_{2}$.

2.3 $A B=B C$ and
$A \hat{B C}=50^{\circ}$
Calculate, with reasons, the sizes of

$$
\text { 2.3.1 } \hat{F} \text { and }
$$

2.3.2 हि.
3. $O Y \| M L$ and $\hat{X}=40^{\circ}$.

Calculate, with reasons, the sizes of the following:
$3.1 \hat{O}_{1}$
$3.2 \mathrm{Y}_{2}$
$3.3 \mathrm{O}_{2}$

4. O is the centre of the circle and diameter $K L$ is produced to meet NM produced at P. $\mathrm{ON} \| \mathrm{LM}$ and $\hat{\mathrm{F}}=76^{\circ}$.

Calculate, giving reasons, the sizes
$4.1 \hat{L}_{1}$
$4.2 \hat{o}_{1}$
$4.3 \hat{M}_{4}$
$4.4 \hat{N}_{1}+\hat{\mathrm{N}}$
$4.5 \hat{M}_{1}$
4.6 Prove
5. AB is a diameter of the circle.
The chord ED and the diameter $A B$ are produced to meet at C .

5.1 Write down the size of \hat{D}_{4} Give a reason for your answer.
5.2 If $\hat{A}_{1}=22^{\circ}$ and $\hat{C}=24^{\circ}$, calc of \hat{D}_{5} and deduce that DA bise
12.6 The area of quadrilateral KPNQ
$=$ the area of $\triangle K P N+$ the area of $\triangle K Q N$
$=\frac{1}{2} \mathrm{PN} \cdot \mathrm{KN} \cdot \sin 52^{\circ}+\frac{1}{2} \mathrm{QN} \cdot \mathrm{KN} \cdot \sin 46^{\circ}$
.. . where $Q N=K N=200 m \& P N=118 m$
$=9298,526 \ldots+14386,796 \ldots$
$\simeq 23685,32 \mathrm{~m}^{2}<$

13.1 $\mathrm{MPN}=180^{\circ}-\left(52^{\circ}+32^{\circ}\right) \quad \ldots \angle \operatorname{sum}$ of $\triangle M P N$
$=96^{\circ}<$
13.2 In $\triangle \mathrm{MPN}$:
$\frac{\mathbf{M P}}{\sin 32^{\circ}}=\frac{160}{\sin 96^{\circ}}$

$\therefore M P=\frac{160 \sin 32^{\circ}}{\sin 96^{\circ}}$

$$
\simeq 85 \mathrm{~m}<
$$

13.3 In $\triangle \mathrm{PMT}$

$$
\frac{\mathbf{P T}}{85}=\sin 52^{\circ}
$$

$$
\mathrm{PT}=85 \sin 52^{\circ}
$$

$$
\simeq 67 \mathrm{~m}<
$$

$14.1 \quad c^{2}=a^{2}+b^{2}-2 a b \cos C$
14.2.1 In $\Delta K L M$

$$
\begin{aligned}
\frac{15}{\mathrm{KM}} & =\cos 35^{\circ} \\
\frac{15}{\cos 35^{\circ}} & =\mathrm{KM}
\end{aligned}
$$

$K M \simeq 18,3 \mathrm{~m}<$
14.2.2 $\ln \triangle \mathrm{KMN}: \mathrm{KMN}=140^{\circ}$

$$
=715,26 \ldots
$$

$\therefore K N \simeq 26,7 \mathrm{~m}<$
14.2.3 $\ln \triangle K M N$:

$$
\begin{aligned}
& \Rightarrow \frac{\boldsymbol{\operatorname { s i n } \theta}}{10}=\frac{\sin 140^{\circ}}{26,7} \\
& \begin{aligned}
& \therefore \sin \theta=\frac{10 \sin 140^{\circ}}{26,7} \\
&=0,2407 \ldots \\
& \mathrm{TOP} \\
& \mathrm{posi}
\end{aligned} \\
& \therefore \theta
\end{aligned}
$$

Note: θ is acute \because already $K \hat{M N}$ is obtuse
$15.1 \quad \frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}<$

15.2.1 DEFF $=y$
.. corresponding \angle^{s}; A $\therefore A \hat{D} B=y-x \quad \ldots$ exterior \angle of $\triangle D A E$
$\& \mathrm{DAB}=90^{\circ}+x$
In $\triangle \mathrm{DAB}: \frac{\mathrm{BD}}{\sin \left(90^{\circ}+x\right)}=\frac{\mathrm{h}}{\sin (y-x)} \ldots f_{\text {in }}$

$$
\begin{aligned}
& \therefore \mathrm{BD}=\frac{\mathrm{h} \sin \left(90^{\circ}+x\right)}{\sin (y-x)} \\
& \therefore \mathrm{BD}=\frac{\mathrm{h} \cos x}{\sin (y-x)}
\end{aligned}
$$

15.2.2 $\quad B D=\frac{8 \cos 31^{\circ}}{\sin \left(61^{\circ}-31^{\circ}\right)}$

$$
\mathrm{BD}=\frac{8 \cos 31^{\circ}}{\sin 30^{\circ}}
$$

$$
B \mathrm{BD}=13,71 \ldots \mathrm{~m}
$$

n $\triangle D B C$:
$\frac{C D}{B D}=\sin y$
$\therefore C D=B D \sin 61^{\circ}$
$C D=12 \mathrm{~m}<$
16.

For Questions 16 and 17 Be sure to read the
'Advice for 2D problems' on page 10.13.
16.1 Exterior \angle of $\Delta=$ sum of the two int. opp. $\angle^{\text {s }}$
16.2

$$
\text { In } \triangle \text { MTN: } \frac{\text { MT }}{\sin x}=\frac{\mathrm{k}}{\sin (\mathrm{y}-x)}
$$

$$
\therefore \mathrm{MT}=\frac{\mathrm{k} \sin x}{\sin (y-x)} \ldots \text { (1) }
$$

It is important to place the required side in the TOP LEFT position.

16.3 In right $\angle{ }^{d} \Delta M S T: \frac{M S}{M T}=\sin y$

$$
\therefore \mathrm{MS}=\mathrm{MT} \sin \mathrm{y}
$$

(1) in 2: $\therefore M S=\frac{k \sin x \cdot \sin y}{\sin (y-x)}$

Note: MT is the LINK between the $2 \Delta^{\mathrm{s}}$ rt $\angle{ }^{d} \Delta \mathrm{MST}$ and non-rt $\angle{ }^{d} \Delta \mathrm{MTN}$

$$
\mathrm{TR}=\frac{x}{\cos (\theta-\alpha)} \ll
$$

$$
\text { 17.2 } \hat{P}=90^{\circ}-\theta<\ldots<\operatorname{sum} \text { of } \Delta
$$

17.3

$$
\text { In } \triangle \text { PTR: } \frac{\mathrm{TR}}{\sin \left(90^{\circ}-\theta\right)}=\frac{2}{\sin \alpha}
$$

$$
\therefore \mathrm{TR}=\frac{2 \cos \theta}{\sin \alpha}<
$$

17.4

$$
\frac{x}{\cos (\theta-\alpha)}=\frac{2 \cos \theta}{\sin \alpha} \quad \ldots \text { both }=T R
$$

$$
x=\frac{2 \cos \theta \cdot \cos (\theta-\alpha)}{\sin \alpha}
$$

$17.5 x=2 \cos 50^{\circ} \cdot \cos \left(50^{\circ}-30^{\circ}\right)$ 2,4 metres <

- MEASUREMENT [6]

QUESTION 8

A solid metallic hemisphere has a radius of 3 cm . It is made of metal A To reduce its weight a conical hole is drilled into the hemisphere (as shown in
 the diagram) and it is completely filled with a lighter metal B. The conical hole has a radius of $1,5 \mathrm{~cm}$ and a depth of $\frac{8}{9} \mathrm{~cm}$.

Calculate the ratio of the volume of metal A to the volume of metal B.
9.1 Complete the statement so that it is valid:

The line drawn from the centre of the circle perpendicular to the chord.
(1)
9.2 In the diagram, O is the centre of the circle.
The diameter DE is perpendicular to the chord PQ at C .
$D E=20 \mathrm{~cm}$ and $C E=2 \mathrm{~cm}$.

Calculate the length of the following with reasons:
9.2.1 OC
9.2.2 PQ
(2)(4) [7]

QUESTION 10

10.1 In the diagram, O is the centre of the circle and A, B and D are points on the circle.

Use Euclidean geometry methods to prove the theorem which states that $A \hat{B} B=2 A \hat{D} B$.
[6]
agram, M is the centre of the circle. K and T lie on the circle.
ıced and CK produced meet in N .
$=N C$ and $\hat{B}=38^{\circ}$.

10.2.1 Calculate, with reasons, the size of the following angles:
(a) KM M
(b) \hat{T}_{2}
(2)(2)
(c) \hat{C}
(d) \hat{K}_{4}
10.2.2 Show that NK = NT.
10.2.3 Prove that AMKN is a cyclic quadrilateral.

QUESTION 11

11.1 Complete the following statement so that it is valid:
The angle between a chord and a tangent at the point of contact is . . .
11.2 In the diagram, EA is a tangent to circle ABCD at A.
$A C$ is a tangent to circle CDFG at C.
$C E$ and $A G$ intersect at D.

If $\hat{A}_{1}=x$ and $\hat{E}_{1}=y$, prove the following with reasons:
11.2.1 BCG || AE
11.2.2 AE is a tangent to circle FED
11.2.3 $A B=A C$
(4) [15]

Q6

MEASUREMENT [6]

8. Volume of metal B (the cone)
$=\frac{1}{3} \pi r^{2} . h$
$=\frac{1}{3} \pi(1,5)^{2} \cdot \frac{8}{9}$
$=\frac{2}{3} \pi$

Volume of the hemisphere $=\frac{1}{2}\left(\frac{4}{3} \pi r^{3}\right)$

$$
\begin{aligned}
& =\frac{2 \pi}{3} \cdot 3^{3} \\
& =18 \pi
\end{aligned}
$$

Volume of metal $A=18 \pi-\frac{2}{3} \pi=17 \frac{1}{3} \pi$
\therefore The ratio:
Volume of metal A: Volume of metal B

	$=17 \frac{1}{3} \pi: \frac{2}{3} \pi$
$\times 3)$	$=52 \pi: 2 \pi$
$\div 2 \pi)$	$=26: 1<$

9.2.1 $O E=O D=\frac{1}{2}(20)=10 \mathrm{~cm}$
$\mathrm{OC}=8 \mathrm{~cm}<\ldots C E=2 \mathrm{~cm}$
9.2.2 $\ln \triangle \mathrm{OPC}$:

$P Q=$
$=12 \mathrm{~cm}$
 . line from centre \perp to chord

Construction: Join DO and Proof: produce it to C

Let $\hat{D}_{1}=x$
then $\hat{\mathrm{A}}=x \ldots L^{s}$ opp
$\therefore \hat{O}_{1}=2 x$
... ext. \angle of $\triangle D A O$

Similarly, $\hat{O}_{2}=2 y$

$$
\begin{aligned}
\therefore \text { AÔB } & =2 x+2 y \\
& =2(x+y)
\end{aligned}
$$

$=2 A \hat{A} B<$

(a) $\mathrm{K} \hat{M} A=2\left(38^{\circ}\right)$
\angle at centre $=$
$=76^{\circ}<$
$2 \times \angle$ at circumference
(b) $\hat{\mathrm{T}}_{2}=38^{\circ}<\ldots$ ext. \angle of cyclic quad. BKTA
(c) $\hat{\mathrm{C}}=38^{\circ}$
\angle in same segment
or, ext. \angle of c.q. CKTA
(d) $N \hat{A} C=38^{\circ}$ \qquad \angle s opposite $=$ sides
$\therefore \hat{\mathrm{K}}_{4}=38^{\circ}<\ldots$ ext. \angle of c.q. CKTA
10.2.2 In $\triangle \mathrm{NKT}$

$$
: \hat{\mathrm{K}}_{4}=\hat{\mathrm{T}}_{2}
$$

$$
\ldots \text { both }=38^{\circ} \text { in } 10.2 .1
$$

$$
\mathbf{N K}=\mathbf{N T}<\ldots \text { sides opp }=\angle^{s}
$$

10.2 .3
$\mathrm{K} \hat{M A}=2\left(38^{\circ}\right) \quad \ldots$ see $10.2 .1(a)$
\& $\hat{\mathrm{N}}=180^{\circ}-2\left(38^{\circ}\right) \quad \ldots$ sum of \angle^{s} of $\triangle N K T$ (see 10.2.2)
$\therefore \mathrm{KMA}+\hat{\mathrm{N}}=180^{\circ}$

\therefore AMKN is a cyclic quadrilateral $<$

opposite \angle^{s} of quad upplementary or conv. opp \angle^{s} of cyclic quad
11.1 . . . equal to the angle subtended by the chord in the alternate segment. <
11.2

11.2.1 $\quad \hat{A}_{1}=x$
.. given
$\therefore \hat{\mathrm{C}}_{2}=x \quad \ldots$ tan chord theorem
$\hat{G}_{2}=x \quad \ldots$ tan chord theorem
$\therefore \hat{A}_{1}=\hat{G}_{2}$
BCG || AE < \ldots alternate $\angle^{s}=$
11.2.2 $\hat{\mathrm{E}}_{1}=\hat{\mathrm{C}}_{3}=\mathrm{y} \quad \ldots$ alternate $\angle^{s} ; B G \| A E$
$\therefore \hat{F}_{1}=\mathrm{y} \quad \ldots$ exterior \angle of cyclic quad
$\therefore \hat{E}_{1}=\hat{F}_{1}$
AE is a tangent to \odot FED $<$
. converse tan-chord theorem
11.2 .3

$\hat{\mathrm{C}}_{1}$	$=\mathrm{CAE}$	\ldots alternate $\angle^{s} ; B C G \\| A E$	
	$=\hat{\mathrm{B}}$	\ldots tan chord theorem	
$\therefore \hat{\mathrm{C}}_{1}$	$=\hat{\mathrm{B}}$		

$\therefore \mathbf{A B}=\mathbf{A C}<\ldots$ sides opposite $=\angle^{s}$

Gr 12 Maths 2 in 1 offers:

a UNIQUE 'question \& answer method'

of mastering maths
'a way of thinking'
To develop . . .

- conceptual understanding
- reasoning techniques

Kilpatrick's interlinking strands of mathematical proficiency

- procedural fluency \& adaptability
- a variety of strategies for problem-solving

Our South African Maths Framework

The questions are designed to:

- transition from basic concepts through to the more challenging concepts
- include critical prior learning (Gr 10 \& 11) when this foundation is required for mastering the entire FET curriculum
- engage learners eagerly as they participate and thrive on their maths journey
- accommodate all cognitive levels

The questions and detailed solutions have been provided in

SECTION 1: Separate topics

It is important that learners focus on and master one topic at a time BEFORE attempting 'past papers' which could be bewildering and demoralising. In this way they can develop confidence and a deep understanding.

SECTION 2: Exam Papers

When learners have worked through the topics and grown fluent, they can then move on to the exam papers to experience working through a variety of questions in one session, and to perfect their skills.

There are TOPIC GUIDES which enable learners to continue mastering one topic at a time, even when working through the exam papers.

PLUS, . . .

CHALLENGING

SECTION
These questions are Cognitive Level 3 \& 4 questions, diagnosed as such following poor performance of learners in recent examinations.

Independent Events vs Mutually Exclusive Events

First do The Probability Rules：Q1－ 3 on p． 50.

QUESTION 2

A survey concerning their holiday preferences was done 180 staff members．The options they could choose from w
－Go to the coast
－Visit a game park
－Stay at home

The results were recorded in the table below：

	Coast	Game Park	Home	T
Male	46	24	13	
Female	52	38	7	
Total	98	62	20	1

2．1 Determine the probability that a randomly selected staff member：
2．1．1 is male
2．1．2 does not prefer visiting a game park
2．2 Are the events＇being a male＇and＇staying at home independent events？Motivate your answer with relevant calculations．

Solutions

2．1．1 $\quad \mathrm{P}($ male $)=\frac{83}{180}$＜

QUESTION 3

For two events，A and B ，it is given that：

$$
\begin{aligned}
& P(A)=0,2 \\
& P(B)=0,63 \\
& P(A \text { and } B)=0,126
\end{aligned}
$$

Are the events，A and B ，independent？
Justify your answer with appropriate calculations．
（3）

Solution

Independent events：

For 2 events \mathbf{A} and \mathbf{B} to be INDEPENDENT：
$\mathbf{P}(\mathbf{A}$ and $\mathbf{B})$ must be equal to $\mathbf{P}(\mathbf{A}) \times \mathbf{P}(\mathbf{B})$
．．．called the PRODUCT Rule
So，calculate the value of each of these expressions to determine whether they are equal or not．

$$
\mathbf{P}(\mathbf{A}) \mathbf{x} \mathbf{P}(\mathbf{B})=0,2 \times 0,63=0,126
$$

But， $\mathbf{P}(\mathbf{A}$ and $\mathbf{B})=0,126$ also \ldots given

$\therefore \mathbf{P}(A) \times \mathbf{P}(B)=\mathbf{P}(A$ and $B)$

\therefore The 2 events A and B are independent

Note the layout of the PROOF i．e．the answer must be JUSTIFIED！

STION 4

$P(A)=0,45 ; P(B)=y$ and $P(A$ or $B)=0,74$
ine the value（s）of y if A and B are mutually e．
（3）

tion

$\mathbf{P}(\mathbf{A}$ or $\mathbf{B})$	$=\mathbf{P}(\mathbf{A})+\mathbf{P}(\mathbf{B}) \quad \ldots \quad A$ and B are mutually
$\therefore 0,74$	$=0,45+\mathbf{y}$
$\therefore \mathbf{y}$	$=\mathbf{0 , 2 9}<$

6. In the accompanying figure,
$P(2 ; y)$ is a point in the first quadrant and $\mathrm{OP}=\sqrt{13} . \quad \mathrm{XOP}=\theta$.

6.1 Calculate the value of y.
6.2 Write down the numerical value of $\cos ^{2} \theta$.
6.3 Calculate the value of: $13 \sin ^{2}\left(180^{\circ}+\theta\right)-\tan \theta$.
7. In the diagram alongside,

PÔM $=90^{\circ}, X \hat{O} M=\theta, M(6 ; a)$,
$P(b ; 4)$ and $\sqrt{5} \cos \theta-2=0$.
Determine, without the use of a calculator, the numerical value of:

7.1 a
7.2 b
(4)(3)

In the sketch alongside, prove that
$8.1 \frac{\sin \theta}{\cos \theta}=\tan \theta$
$8.3 \sin \left(90^{\circ}-\theta\right)=\cos \theta$
$8.2 \sin ^{2} \theta+\cos ^{2} \theta=1$

9. In the accompanying figure, $\mathrm{P}(x ; y)$ is a point on the circle with radius r, centre $(0 ; 0)$ and XÔP $=\theta$.
9.1 Prove that:
(a) $\tan \theta=\frac{\sin \theta}{\cos \theta}$
(b) $\sin ^{2} \theta+\cos ^{2} \theta=1$

9.2 Find the value of θ if $x=-\sqrt{3}$ and $y=1$.

Civen Ratios, calculate...

Note: 'without a calculator' means 'with a sketch

10. If $5 \sin x=3$ and $x+y=90^{\circ}$, calculate without a calculator the value of

$$
10.1 \cos y \quad 10.2 \tan x+\tan y
$$

(3)(3)
11. If $5 \tan \theta=12$ and $\theta \in\left[90^{\circ} ; 360^{\circ}\right]$, determine, without using a calculator, but using a suitable sketch, the value of $\sin \theta+\cos \theta$.
12. If $\tan \mathrm{A}=-\frac{5}{12}$ and $180^{\circ} \leq \mathrm{A} \leq 360^{\circ}$, draw a sketch and calculate (without determining the value of A) the value of: $13 \sin ^{2} \mathrm{~A}$
13. $\sin A=\frac{3}{5}$ and $90^{\circ}<A<270^{\circ}$. Determine, by means of a sketch, the value of: $\frac{\cos A+\sin A}{1-\frac{1}{3} \tan A}$
14. $\tan \alpha=-\frac{3}{4} ; \alpha \in\left(0^{\circ} ; 180^{\circ}\right)$ and $13 \cos \beta-12=0 ; \beta \in\left(180^{\circ} ; 360^{\circ}\right)$ Calculate the value of $\sin \alpha \sin \beta$, without using a calculator.
15. If $\sin x=-\frac{5}{13}$ and $90^{\circ}<x<270^{\circ}$, calculate $\tan ^{2} x \cdot \cos ^{2} x$ without using a calculator.
16. If $\cos x=\mathrm{t}$ and \hat{x} is acute, express
$16.1 \sin x$, and
$16.2 \tan ^{2} x$ in terms of t
(1)(2)
17. If $\tan 27^{\circ}=p$, express each of the following in terms of p :
$17.1 \sin 27^{\circ} \quad 17.2 \cos 27^{\circ} \quad 17.3 \sin 63^{\circ}$
$17.4 \tan 153^{\circ} \quad 17.5 \tan \left(-27^{\circ}\right) \quad 17.6 \cos ^{2} 387^{\circ}$
$(6 \times 2=12)$

EXERCISE 6.2

Identities

(c) Determine, first numerically, and then in terms of θ :
$\boldsymbol{\operatorname { s i n }}\left(180^{\circ}-\theta\right)=\left(\frac{y}{r}=\right)$

$\boldsymbol{\operatorname { c o s }}\left(180^{\circ}-\boldsymbol{\theta}\right)=\left(\frac{x}{r}=\right) \ldots=\ldots$.
$\boldsymbol{\operatorname { t a n }}\left(180^{\circ}-\boldsymbol{\theta}\right)=\left(\frac{y}{x}=\right)$.
5.3 (a) $A^{\prime \prime}$ is a reflection of point A in the ... and the coordinates of point $A^{\prime \prime}$ are

Special $\angle^{s} ; \mathbf{1 8 0}^{\circ} / 360^{\circ}$

Speciel angles

Simplify WITHOUT using a calculator:
$1.1 \frac{\cos ^{2} 45^{\circ}}{\sin 30^{\circ}} \cdot \frac{\cos 0^{\circ}}{\tan 60^{\circ}}$
1.2
$1.3 \frac{\cos 240^{\circ} \cdot \sin 330^{\circ} \cdot \tan 120^{\circ}}{\sin 150^{\circ} \cdot \tan 210^{\circ} \cdot \cos 120^{\circ}} \quad 1.4$
$2.1 \frac{1}{\sqrt{3}} \sin ^{2} 45^{\circ} \cdot \sin \left(-300^{\circ}\right)-\frac{1}{2} \tan (-45$
$2.2 \frac{\tan 135^{\circ} \cdot \sin 230^{\circ} \cdot \tan \left(-60^{\circ}\right)}{\cos 140^{\circ} \cdot \tan 300^{\circ} \cdot \sin 150^{\circ}}$
3. $\frac{\tan \left(-330^{\circ}\right) \cdot \sin 480^{\circ} \cdot \sin 260^{\circ}}{\cos 225^{\circ} \cdot \sin 315^{\circ} \cdot \cos 350^{\circ}}$
4. Determine, without the use of a cal $4.1 \frac{\sin 137^{\circ}}{\cos 133^{\circ}}$ 4.2

$180^{\circ} / 360^{\circ}$ Rule (no ratio chan

Basic Gr 9 transformatic are used here to develc
5.1 (a) In the figure alongside, the coordinates of point A are
(b) Determine the values of $\sin \theta, \cos \theta$ and $\tan \theta$.
5.2 (a) A^{\prime} is a reflection of point A in the ... and the coordinates of point A^{\prime} are
(b) Write XÔA' in terms of θ.
5.4 (a) $\mathrm{A}^{\prime \prime \prime}$ is a reflection of point A in the . . . and the coordinates of point A"' are ...
(b) Write reflex XÔA"' in terms of θ \& write acute XÔA"' in terms of θ.
(c) Determine, first numerically, and then in terms of θ :
$\boldsymbol{\operatorname { s i n }}\left(\mathbf{3 6 0 ^ { \circ }}-\boldsymbol{\theta}\right)=\left(\frac{\mathrm{y}}{\mathrm{r}}=\right) \ldots=\ldots$.

$\boldsymbol{\operatorname { c o s }}\left(\mathbf{3 6 0}{ }^{\circ}-\boldsymbol{\theta}\right)=\left(\frac{x}{r}=\right) \ldots=\ldots$.
$\boldsymbol{\operatorname { t a n }}\left(\mathbf{3 6 0} 0^{\circ}-\boldsymbol{\theta}\right)=\left(\frac{y}{x}=\right) \ldots=\ldots$.
(d) Determine, first numerically, and then in terms of θ :
$\boldsymbol{\operatorname { s i n }}(-\boldsymbol{\theta})=\left(\frac{\mathrm{y}}{\mathrm{r}}=\right) \ldots=\ldots$.
$\boldsymbol{\operatorname { c o s }}(-\boldsymbol{\theta})=\left(\frac{x}{r}=\right) \ldots=\ldots$.
$\boldsymbol{\operatorname { t a n }}(-\boldsymbol{\theta})=\left(\frac{y}{x}=\right) \ldots=\ldots$.

MARKS HAVE NOT BEEN ALLOCATED IN 'THEORY' Q5 \& 6.

Trigonometry

Identities \& Compound Angles

QUESTION 1

1.1 Given: $\sin 16^{\circ}=p$

Determine the following in terms of p, without using a calculator.
1.1.1 $\sin 196^{\circ}$
1.1.2 $\cos 16^{\circ}$
(2)(2)
1.2 Given: $\cos (A-B)=\cos A \cos B+\sin A \sin B$

Use the formula for $\cos (A-B)$ to derive a formula for $\sin (A+B)$.
1.3 Simplify $\frac{\sqrt{1-\cos ^{2} 2 A}}{\cos (-A) \cdot \cos \left(90^{\circ}+A\right)}$ completely, given that $0^{\circ}<\mathrm{A}<90^{\circ}$
1.4 Given: $\cos 2 \mathrm{~B}=\frac{3}{5}$ and $0^{\circ} \leq \mathrm{B} \leq 90^{\circ}$

Determine, without using a calculator, the value of EACH of the following in its simplest form:
1.4.1 $\cos B$
1.4.2 $\sin B$
(3)(2)
1.4.3 $\cos \left(B+45^{\circ}\right)$
(4) [21]

Solutions

$$
\begin{aligned}
& \text { 1.1.1 } \left.\begin{array}{rl}
\sin 196^{\circ}= & \sin \left(180^{\circ}+16^{\circ}\right)=-\sin 16^{\circ}=-\mathrm{p}< \\
\text { 1.1.2 } \quad \cos ^{2} 16^{\circ} & =1-\sin ^{2} 16^{\circ} \\
& =1-\mathrm{p}^{2} \\
\therefore \cos 16^{\circ} & =\sqrt{1-\mathrm{p}^{2}}<
\end{array}\right\} .
\end{aligned}
$$

OR: $\sin 16^{\circ}=\frac{p}{1}$

$$
\cos 16^{\circ}=\sqrt{1-\mathrm{p}^{2}}<
$$

Refer to Formulae \& Derivations of Compound and Double Angles on p.v (at the back of this book).

CHALLENGING QUESTIONS \& SOLUTIONS: PAPER 2

1.2

$$
\sin (A+B)=\cos \left[90^{\circ}-(A+B)\right]
$$

$=\cos \left[\left(90^{\circ}-A\right)-B\right]$
$=\cos \left(90^{\circ}-A\right) \cos B+\sin \left(90^{\circ}-A\right) \sin B$
$=\quad \sin A \cos B \quad+\quad \cos A \sin B<$

QUESTION 2

2.1 Prove the identity
$\cos ^{2}\left(180^{\circ}+x\right)+\tan \left(x-180^{\circ}\right) \sin \left(720^{\circ}-x\right) \cos x=\cos 2 x$
(5)
2.2 Use $\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta$ to derive the formula for $\sin (\alpha-\beta)$.
$\frac{\sqrt{1-\cos ^{2} 2 A}}{\cos (-A) \cdot \cos \left(90^{\circ}+A\right)}=\frac{\sqrt{\sin ^{2} 2 A}}{\cos A \cdot(-\sin A)}$

$$
\begin{aligned}
& =\frac{\sin 2 A}{-\sin A \cos A} \\
& =\frac{2 \sin A \cos A}{-\sin A \cos A} \\
& =-2<
\end{aligned}
$$

1.4 Given: $\cos 2 B=\frac{3}{5}$
1.4.1 $2 \cos ^{2} B-1=\cos 2 B$

$$
2 \cos ^{2} B=\cos 2 B+1
$$

	$=\frac{3}{5}+1$
	$=\frac{8}{5}$
$\therefore \cos ^{2} \mathrm{~B}$	$=\frac{4}{5}$
$\therefore \cos \mathrm{~B}$	$=\frac{2}{\sqrt{5}}<\quad \ldots 0^{\circ} \leq B \leq 90^{\circ}$

1.4.2 $\sin ^{2} B=1-\cos ^{2} B$
$=1-\frac{4}{5}$
$=\frac{1}{5}$
$\sin B=\frac{1}{\sqrt{5}}<$
1.4.3 $\cos \left(B+45^{\circ}\right)=\cos B \cos 45^{\circ}-\sin B \sin 45^{\circ}$
$=\left(\frac{2}{\sqrt{5}}\right)\left(\frac{1}{\sqrt{2}}\right)-\left(\frac{1}{\sqrt{5}}\right)\left(\frac{1}{\sqrt{2}}\right)$
$=\frac{2}{\sqrt{5} \sqrt{2}}-\frac{1}{\sqrt{5} \sqrt{2}}$
$=\frac{1}{\sqrt{10}}<$
2.3 If $\sin 76^{\circ}=x$ and $\cos 76^{\circ}=y$, show that
$x^{2}-y^{2}=\sin 62^{\circ}$, without using a calculator.

Solutions

2.1 LHS $=(-\cos x)^{2}+(+\tan x)(-\sin x) \cos x$
$=\cos ^{2} x-\left(\frac{\sin x}{\cos x}\right)\left(\frac{\sin x}{1}\right)\left(\frac{\cos x}{1}\right)$
$=\cos ^{2} x-\sin ^{2} x$
$=\cos 2 x$
$=$ RHS <
$2.2 \sin (\alpha-\beta)=\cos \left[90^{\circ}-(\alpha-\beta)\right]$
$=\cos \left[90^{\circ}-\alpha+\beta\right]$
$=\cos \left[\left(90^{\circ}-\alpha\right)+\beta\right]$

$$
2.3 \begin{aligned}
& x^{2}-y^{2} \\
& =\sin ^{2} 76^{\circ}-\cos ^{2} 76^{\circ} \\
& =\cos ^{2} 14^{\circ}-\sin ^{2} 14^{\circ} \ldots\left(O R=-\left(\cos ^{2} 76^{\circ}-\sin ^{2} 76^{\circ}\right)\right. \\
& =\cos 2\left(14^{\circ}\right) \\
& =\cos 28^{\circ} \\
& =\sin \left(90^{\circ}-28^{\circ}\right) \\
& =\sin 62^{\circ}<
\end{aligned} \quad \begin{aligned}
& =-\cos 2\left(76^{\circ}\right) \\
& =-\cos 152^{\circ} \\
& =-\left(-\cos 28^{\circ}\right) \\
& =\cos 28^{\circ}, \text { etc. }
\end{aligned}
$$ CHALLE

4.3 The diagram alongside shows a circle with chords QP and RP Chord SP bisects QPR.

The tanaent at S

See p. ix for the Summary of the Converse Theorems in \odot Geometry.
6. $P Q$ and $P S$ are tangents to the circle at the points Q and S . $\mathrm{PT} \| \mathrm{SR}$ with T on QR . $\mathrm{PSQ}=x$.
5. In the figure below, AB is the diameter of a semicircle with centre O. P is a point on $A B$ produced. $P C S$ is a tangent touching the circle at C, and $S O$ is perpendicular to $A B$. SO and $A C$ intersect at T. $B C$ and $O C$ are drawn.

5.1 If $\hat{C}_{1}=x$, give, with reasons, two other angles each of which is equal to x.
5.2 Prove that $\mathrm{PCOT}=\hat{\mathrm{T}}_{2}$.
5.3 Give, with reasons, the magnitude of the following angles in terms of x :
(a) CŜT
(b) CôB
(c) \hat{P}
(4)(2)(2)
\%
Apply basic Gr 9 knowledge of similar Δ^{s} and the Theorem of Pythagoras in 5.4 and 5.5.
5.4 Name (without giving reasons) TWO triangles which are similar to $\triangle \mathrm{CTO}$.
(2)
5.5 Prove that PA. $\mathrm{PB}=O P^{2}-O A^{2}$.

easons, three other angles each

QTS is a cyclic quadrilateral.
TSR is isosceles
ngent to circle QVP, prove that QSR is d triangle.
points on a circle and the tangents at meet at A. Then
etween a tangent and a chord drawn nt of contact is
two circles touch externally at R.
assing through R and the centre of the smaller ommon tangent $A B$ produced at the point C. gent at R meets $A B$ at T.

$A \hat{R B}=90^{\circ}$.
R is a tangent to the circle which ugh A, R and B.
8. In the following figure, $A B$ and $A C$ are tangents to a circle with centre O.
$B D$ is a diameter and $C E \perp B D$.
$B C$ and $C O$ are drawn. $A O$ cuts $B C$ at M.

8.1 ABOC is a cyclic quadrilateral.
8.2 CEOM is a cyclic quadrilateral.
8.3 CB bisects EĈA

> The following question involves similar Δ^{s}.
> See more combined similar triangles and
> Circle Geometry examples in the last section.
9.1 If $P Q$ and $R S$ are chords of a circle, and $P Q=R S$ then $P Q$ and RS subtend equal angles in the same segment at the circumference of the circle.
State the converse of this useful fact.
9.2 Cyclic quadrilateral ABCD has $D C=C B$.
The tangents at D and C meet at E.
(a) If $\mathrm{BAC}=x$, find, giving reasons,
five other angles each equal to x.
(b) Prove that $\mathrm{CB}^{2}=\mathrm{EC} . \mathrm{DB}$.

Know your theory!

Each topic has definitions, vocabulary, facts, laws, theorems. . a 'blueprint'! Be sure to study all the concepts involved, as all the calculations require you to have and apply this knowledge.

Do so with confidence!

(4)

Important Facts
 FACT 1 : Points on Graphs

If a point lies on a graph, the equation is true for its coordinates, i.e. the coordinates of the point satisfy the equation ... so, substitute!
and, conversely,
If a point (i.e. its coordinates) satisfies the equation of a graph (i.e. 'makes it true'), then it lies on the graph.

FACT 2 : Point(s) of Intersection

The coordinates of the point(s) of intersection of two graphs 'obey the conditions' of both graphs, i.e. they satisfy both equations simultaneously.

They are found:

- 'algebraically' by solving the 2 equations, or
- 'graphically' by reading from the graph.

THESE 2 FACTS ARE CRUCIAL!

STRAIGHT LINE GRAPHS \& their equations

Standard forms

Standard forms of the equation of a straight line:

- $y=m x+c:$
where $\mathbf{m}=$ the gradient $\& \mathbf{c}=$ the y-intercept
When $\mathrm{m}=0: \quad \mathbf{y}=\mathbf{c} \ldots$ a line $\| \mathbf{x}$-axis
When $\mathbf{c}=0: \mathbf{y}=\mathbf{m x} \ldots$ a line through the origin
Also: $\mathbf{x}=\mathbf{k} \ldots$ a line $\| \mathbf{y}$-axis
- $y-y_{1}=m\left(x-x_{1}\right):$
where $m=$ the gradient $\&\left(\mathbf{x}_{1} ; \mathbf{y}_{1}\right)$ is a fixed point.

General form

The general form of the equation of a straight line is $\mathbf{a x}+\mathbf{b y}+\mathbf{c}=\mathbf{0}, \quad$ e.g. $2 x+3 y+6=0$

CIRCLES

\& their equations
Circles with the origin as centre
True of any point ($\mathbf{x} ; \mathbf{y}$) on a circle with centre $(\mathbf{0} ; \mathbf{0})$ and radius \mathbf{r} is that:

$$
\begin{aligned}
& \mathbf{x}^{\mathbf{2}}+\mathbf{y}^{\mathbf{2}}=\mathbf{r}^{\mathbf{2}} \\
& \text { Thm. of Pythag.! }
\end{aligned}
$$

Circles with any given c

True of any point ($\mathbf{x ;} \mathbf{y}$)
on a circle with
centre ($\mathbf{a ;} \mathbf{b}$)
and radius \mathbf{r} is that:

$$
(x-a)^{2}+(y-b)^{2}=r^{2}
$$

Distance formula! (Thm. of Pythag.)

Converting the equation of

General form: $A x^{2}+B x+C y^{2}+D y$
to Standard form: $(x-a)^{2}+(y-$ (using completion of squares)
e.g. $x^{2}-6 x+y^{2}+8 y-25=0$ $x^{2}-6 x+y^{2}+8 y=2$ $x^{2}-6 x+3^{2}+y^{2}+8 y+4^{2}=2$

$$
\therefore(x-3)^{2}+(y+4)^{2}
$$

This is the equation of a circle wit centre $(3 ;-4) \&$ radius, $r=\sqrt{50}(=$

A Tangent to a circle . . .
is perpendicular to the radius of the circle at the point of contact.

To find the equation of a tangent, use 'm and 1 point'

Point(s) of intersection of a Line and a Circle

A line and a circle either
'cut' (twice!) [secant] (2 points in common)

or 2
'touch' (once!) [tangent] (1 point in common)
or

don't cut or touch
(no points in common)

If we substitute $y=m x+c$ into the equation of the \odot, there will either be:

2 solutions
or 21 solution or
no solutions
for x, resulting in one of the above scenarios.

FINAL ADVICE

Use common sense
\& ALWAYS DRAW A PICTURE !!!

WHY TAS study guides?

O Up-to-date and fully CAPS-compliant
O Designed as stand-alone study guides for independent learning
O Meticulously structured for accessibility by different style learners
O Comprehensive in content
O Accurate and relevant material
O Inclusion of relevant material from earlier grades
○ Accessible language and layout style

Comprehensive NOTES

CONCAVITY \& THE POINT OF INFLECTION

$f^{\prime \prime}(x)=0$ at the point of inflection of $f^{\prime \prime}(x)<0$ where f is concave up
$f^{\prime \prime}(x)>0$ wher

Explanatory DIAGRAMS

Point(s) of intersection of a Line and a Circle

A line and a circle either
(1) 'cut' (twice!) [secant] (2 points in common)
or 2 'touch' (once!) [tangent] (1 point in common)
or 3 don't cut or touch (no points in common)

If we substitute $y=m x+c$ into the equation of the \odot,
there will either be: (1) 2 solutions
or 21 solution
or (3) no solutions
for x, resulting in one of the above scenarios. than just a study guide...

Our books are MORE than just study guides ...

If you learn or memorise something you are likely to eventually forget it. If you understand something you will know it forever.

The Answer Series study guides are designed to enhance the UNDERSTANDING of concepts which is reinforced with extensive, focussed revision applications.

CONTENTS: Gr 12 Exams for DBE \& IEB

The Exam
Sure Route to Success in Matric Maths
Important Advice for Matrics
The Curriculum (CAPS) : Overview of Topics
Useful Reminders

	Exam	Memo	
Exam	Memo	39	
	IEB Paper 1 Topic Guide	40	
	IEB Paper 2 Topic Guide	41	A68
IEB November 2017 Paper 1	44	A70	
	IEB November 2017 Paper 2	47	A73
IEB November 2018 Paper 1	IEB November 2018 Paner 2	49	A76

DBE Paper 1 Topic Guide DBE Paper 2 Topic Guide

DBE November 2014 Paper 1 DBE November 2014 Paper 2 DBE November 2015 Paper 1 DBE November 2015 Paper 2 DBE November 2016 Paper 1 DBE November 2016 Paper 2 DBE November 2017 Paper 1 DBE November 2017 Paper 2 DBE November 2018 Paper 1 DBE November 2018 Paper 2 DBE November 2019 Paper 1 DBE November 2019 Paper 2 DBE November 2020 Paper 1 DBE November 2020 Paper 2

1. Bookwork: Examinable Proofs i
2. Trig Summary vii
3. Quadrilaterals - definitions, areas \& properties viii
an asterisk

$$
\text { Level } 3 \& 4 \mathrm{q}
$$

4. Concavity \& The Point of Inflection ix
identified as beir
5. Analytical Geometry Toolkit
that learners str
with in the ex
6. Grouping of Circle Geometry Theorems

7. Euclidean Geometry: Theorem Statements \&Acceptable Reasonsxiv
8. Calculator Instructions xvii
9. DBE/IEB Formula (Information) Sheet xviii

We are grateful to the Department of Basic Education and the IEB for granting their permission for the inclusion of these exam papers.

9.1 Sketches of f, f^{\prime} and $f^{\prime \prime}$:

At the stationery points of f :
$\mathrm{f}^{\prime}(x)=0$
$3 x^{2}+8 x-3=0$
9.3 f strictly increasing
\rightarrow
$\mathrm{f}^{\prime}(x)>0$

$$
\therefore x<-3 \text { or } x>\frac{1}{3} \quad \ldots \quad \begin{gathered}
\text { See the sketches } \\
\text { of } f \text { and } f^{\prime} .
\end{gathered}
$$

$$
\left[\begin{array}{lc}
\text { OR: } & 3 x^{2}+8 x-3<0 \\
& \therefore(3 x-1)(x+3)<0 \\
\mathrm{f}^{\prime}(x): & +\quad-\quad+ \\
(x): & +-3
\end{array}\right]
$$

9.4 $f(x)=a x^{3}+b x^{2}+c x+d$
$f(0)=-18 \Rightarrow d=-18$
9.2 At the point of inflection:

$$
\begin{aligned}
\mathrm{f}^{\prime \prime}(x) & =0 \\
\therefore 6 x+8 & =0 \\
\therefore 6 x & =-8 \\
\therefore x & =-\frac{4}{3}
\end{aligned}
$$

f is concave down for $x<-\frac{4}{3}<$

$$
\begin{aligned}
& =3 a x^{2}+2 b x+c \\
& \prime(x)=3 x^{2}+8 x-3 \quad \ldots \text { given }
\end{aligned}
$$

$$
=3 \quad ; \quad 2 b=8 \quad ; \quad c=-3
$$

$$
=1
$$

$$
\therefore \mathrm{b}=4
$$

$=x^{3}+4 x^{2}-3 x-18<$

See the sketch of fand $f^{\prime \prime}$
he information very carefully, so that you know t
$=$ the number of molecules after time t ho
$=$ the number of hours after the drug has be taken

$$
=-t^{3}+3 t^{2}+72 t, \quad 0<t<10
$$

OR: x is halfway between $\frac{1}{3} \&-3$

$$
\begin{aligned}
\therefore x & =\frac{\frac{1}{3}+(-3)}{2} \\
& =\frac{-2 \frac{2}{3}}{2} \\
& =-1 \frac{1}{3}<
\end{aligned}
$$

$$
\text { OR: } \begin{aligned}
\mathrm{f}^{\prime \prime}(x) & <0 \\
\therefore 6 x+8 & <0 \\
\therefore 6 x & <-8 \\
\therefore x & <-\frac{4}{3}
\end{aligned}
$$

hours ($t=3$), the number of molecules

$=-3^{3}+3(3)^{2}+72(3)$
$=-27+27+216$
$=216$ molecules $<$
10.2 The 'rate of change' of $M(t)$ vs t at time $t=2$ is the derivative:
as opposed to the 'average rate of change'
which would be $\frac{M(2)-M(0)}{2-0}$ during the first 2 hours

$$
\begin{aligned}
M^{\prime}(t) & =-3 t^{2}+6 t+72 \\
\therefore M^{\prime}(2) & =-3(2)^{2}+6(2)+72 \\
& =-12+12+72 \\
& =\mathbf{7 2} \text { molecules per hour }
\end{aligned}
$$

10.3 The rate at which the number of molecules, $M(t)$, is changing is: $\mathrm{M}^{\prime}(\mathrm{t})=-3 \mathrm{t}^{2}+6 \mathrm{t}+72$. . . a quadratic expression
\& it will be a maximum at the turning point, i.e. when

$$
\begin{aligned}
& t=\frac{-b}{2 a} \quad \text { or } \quad M^{\prime \prime}(t)=0 \\
& =\frac{-6}{2(-3)} \\
& \therefore-6 t+6 t=0 \\
& =1 \\
& \therefore-6 t=-6 t \\
& \therefore t=1
\end{aligned}
$$

\therefore After 1 hour <

OR:
$t=$ the average of $-4 \& 6$
$=\frac{-4+6}{2}$
$=1$

| | UURING
 EXAMINATIONS | IV UURING
 EXAMINATIONS | IOIALS |
| :--- | :---: | :---: | :---: | :---: |
| Males | 80 | $\mathrm{a}=20$ | 100 |
| Females | 48 | 12 | 60 |
| Total | $\mathrm{b}=128$ | 32 | 160 |

$$
11.1 \quad a=100-80=20<
$$

$$
\& \mathbf{b}=80+48 \text { or } 160-32=128<
$$

Copyright © The Answer Series: Photocopying of this material is illegal

CONCAVITY \& THE POINT OF INFLECTION

\qquad changes at the point of inflection:

[^0]
(\%)
 Need help - go to pp. v \& vi to master Compound and Double Angle Formulae.

5.2* Simplify the following expression to a single trigonometric function:
$\frac{4 \cos (-x) \cdot \cos \left(90^{\circ}+x\right)}{\sin \left(30^{\circ}-x\right) \cdot \cos x+\cos \left(30^{\circ}-x\right) \cdot \sin x}$
(6)

ION 7*
Answers on p. A18
of a rectangular block of wood is cut off and shown gram below
ed plane, that is, $\triangle A C D$, is an isosceles triangle $A \hat{D C}=A \hat{C} D=\theta$.
$\mathrm{CB}=\frac{1}{2} \theta, \quad \mathrm{AC}=x+3$ and $\mathrm{CD}=2 x$.
5.3 Determine the general solution of $\cos 2 x-7 \cos x-3=0$.
(6)
5.4* Given that $\sin \theta=\frac{1}{3}$, calculate the numerical value of $\sin 3 \theta$, WITHOUT using a calculator.

In the diagram below, the graphs of $\mathrm{f}(x)=\cos x+\mathrm{q}$ and $\mathrm{g}(x)=\sin (x+\mathrm{p})$ are drawn on the same system of axes for $-240^{\circ} \leq x \leq 240^{\circ}$.

The graphs intersect at $\left(0^{\circ} ; \frac{1}{2}\right),\left(-120^{\circ} ;-1\right)$ and $\left(240^{\circ} ;-1\right)$.
(5) $[24]$

(3)
(4)
(2)
(4)
4.1 Determine the equation of the circle in the form $(x-a)^{2}+(y-b)^{2}=r^{2}$.
4.3 Determine the equation of the tangent APB in the form $y=m x+c$.

4 Calculate the size of α
4.5 Calculate, with reasons, the size of θ

Feeling rusty or confused? Refer to the Trig Summary on p. vii.

QUESTION 5

Answers on p. A17
5.1 Given that $\sin 23^{\circ}=\sqrt{k}$, determine, in its simplest form, the value of each of the following in terms of k, WITHOUT using a calculator:
5.1.1 $\sin 203^{\circ}$
5.1.2 $\cos 23^{\circ}$
(2)(3)
5.1.3 $\tan \left(-23^{\circ}\right)$
(2)
ralues of p and q
alues of x in the interval 0° for which $\mathrm{f}(x)>\mathrm{g}(x)$.
sformation that the graph to form the graph of \mathbf{h}, wh

Your tools . . .

RIGHT ANGLED $\Delta^{\mathbf{s}}$	NON-RIGHT ANGLED $\Delta^{\mathbf{s}}$
(1) Regular trig ratios	(1) Sine rule
(2) Theorem of Pythagoras	(2) Cos rule

Also: Area of a $\Delta=\frac{1}{2}$ bh or $\frac{1}{2}$ absin C
See the Paper 2 Topic Guides (on pp. $2 \& 40$) to select and practice more examples.

Also see p. 23 of the EXTENSION Booklet on CHALLENGING QUESTIONS accompanying our Gr 12 Maths 2 -in-1 study guide (the booklet also forms part of the Gr 12 Maths 2-in-1 E-book).

USEFUL REMINDERS

A helpful reference for what to study before a test or exam

PAPER 1

Quadratic Patterns: $T_{n}=a n^{2}+b n+c$

Linear \& Quadratic Equations

Solve using . . .

- Factorising
- Substitution method or the k-method

Nature of Roots

- Use Δ (the discriminant) to classify roots: $x=\frac{-b \pm \sqrt{\Delta}}{2 a}$, where $\Delta=b^{2}-4 a c$

Simultaneous Equations
Linear \& Quadratic Inequalities

- Number lines
- Interval and inequality notation
- Quadratic formula: $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Fractions

- Denominators and/or numerators may need to be factorised
- Check for zero denominators \& invalid solutions
- constant second difference

Sigma: $\sum_{k=1}^{n} T_{k}=S_{n} \quad \ldots$ Note: $T_{n}=S_{n}-S_{n-1}$

Simple Interest Growth \& Decay
$\mathrm{A}=\mathrm{P}(1 \pm i n)$

- Application of SI Growth involving hire purchase:

Find interest rate, no. of years or principle amount

- Simple Interest Decay = Straight line Depreciation

Compound Interest Growth \& Decay

$$
\mathrm{A}=\mathrm{P}(1 \pm i)^{n}
$$

- Applications involving inflation, population growth, exchange rates
- Find P, i, or n (using logs)
- The effect of different compounding intervals

Exponents \& Surds \& Logs

Depreciation on a Reducing Balance

Patterns \& Sequences

\& $S_{n}=\frac{n}{2}\left(a+T_{n}\right) ;$

$$
S_{n}=\frac{n}{2}[2 a+(n-1) d] \quad \text { think }+ \text { and }- \text { for APs }
$$

$=\frac{x\left[1-(1+\boldsymbol{i})^{-n}\right]}{\boldsymbol{i}}$
$=\frac{x\left[(1+i)^{n}-1\right]}{i}$

imences 1 time period from the present and ends at n .
ded at the same rate as the payments
of the variables in the above formulae except i
d payments, early payments, missed payments

Compound Angle Formulae

Sign stays the same sine \& cosine of A and B mixed
2. $\sin (A-B)=\sin A \cos B-\cos A \sin B$
3. $\cos (A+B)=\cos A \cos B-\sin A \sin B$
4. $\cos (A-B)=\cos A \cos B+\sin A \sin B$

We will prove formula no. 4 (see alongside) and then derive the other 3 from it.

1. $\sin (A+B)=\sin A \cos B+\cos A \sin B$

Sign changes cosine of A and B first,
then sine of $A \& B$

Proof of the Formula:

$\cos (A-B)=\cos A \cos B+\sin A \sin B$

This formula will be derived from the formula no. 1

This formula will be derived from the formula no. 3
or $\cos 2 A=1-2 \sin ^{2} A$
or $\cos 2 A=2 \cos ^{2} A-1$

| First, | |
| :--- | :--- | :--- |
| nportant | |
| ncept! | NOTE: If OP $=1$ unit! |
| (then: $\frac{x}{1}=\cos \theta$ and $\frac{y}{1}=\sin \theta$ | |
| i.e. $x=\cos \theta$ and $y=\sin \theta$ | |

ketch alongside, $\hat{\mathbf{A}}$ and $\hat{\mathbf{B}}$ have been placed in standard position.

$\mathbf{R O Q}=\hat{\mathbf{A}} \mathbf{- \mathbf { B }}$.

he coordinates of the points \mathbf{R} and \mathbf{Q}, both 1 unit from the origin, are:
$\operatorname{os} A ; \sin A) \& Q(\cos B ; \sin B)$ See NOTE above

ne 2 expressions for RQ^{2}
$=1^{2}+1^{2}-2(1)(1) \cos (\mathrm{A}-\mathrm{B}) \quad \ldots$ COSINE RULE
$=2-2 \cos (A-B) \quad \ldots$ (1)
\& $\mathbf{R Q}^{\mathbf{2}}=(\cos A-\cos B)^{2}+(\sin A-\sin B)^{2} \ldots$ DISTANCE FORMULA
$=\cos ^{2} A-2 \cos A \cos B+\cos ^{2} B+\sin ^{2} A-2 \sin A \sin B+\sin ^{2} B$
$=2-2 \cos A \cos B-2 \sin A \sin B<\ldots(2) \ldots \sin ^{2} \theta+\cos ^{2} \theta=1$

- Equate the two expressions for $R Q^{2}$ above:
(1) $=2$
$\therefore 2-2 \cos (A-B)=2-2 \cos A \cos B-2 \sin A \sin B$
Subtract 2: $\quad \therefore-2 \cos (A-B)=-2 \cos A \cos B-2 \sin A \sin B$
\rightarrow Divide by $-2\left(\right.$ or \times by $\left.-\frac{1}{2}\right): \quad \therefore \cos (A-B)=\cos A \cos B+\sin A \sin B<$

What does TAS offer in Mathematics?

Further Studies Mathematics

O Further Studies Maths (IEB) Bk 1 - Compulsory Modules
O Further Studies Maths (IEB) Bk 2 - Elective Modules - Elective modules also available separately

Advanced Programme Mathematics IEB elective module
Marily Buchanan, Cert Esterhuyse \& Ingrid Zlobinsky-Roux 10-12 STATISTICS
2. ANSWER

Advanced Programme Mathematics IEB
воок1
 10-12

Advanced Programme
Mathematics IEB
воок 2

Ch 3: Gr 10 COMPLEX NUMBERS

Grade 10 Complex Numbers Exam Questions

(Solutions on p. 19 in the Answ

1. Factorise $x^{3}-1$, and hence solve $x^{3}-1=0$ for $x \in C$.
2. Calculate the values of a and b so that $\frac{a+3 i}{2-5 i} \cdot b i=-11-13 i$
3. Given the complex numbers $z=5-2 i$ and $w=6 i-1$. Determine in simplest form: $2 z-i w$.
4. Determine, in terms of a and b, the real part of the complex expression $\frac{a+b i}{a-b i}$.
5. The quadratic equation $x^{2}-2 x+p=0$ has a root $x=q+\sqrt{3} i$. Find the rational values of p and q. (IEB 2016)
6. (a) It is given that $p x^{2}+p x+1=0$.

Determine real values of p such that the solutions of the equation are of the form $a+b i$ where a and b are rational and $b \neq 0$.
9. (a) Factorise $x^{2}+8 x+25$ with complex numbers.
(b) Find a quadratic equation that has a solution of $2+3 i$.
10. Consider the following equation: $x^{2}-4 x-8=0$
(a) Calculate the value of the discriminant.
(b) Comment on the nature of the roots.
(c) What constant must be added to the left hand side of the equation, so that the equation has one double real root? (Remember that 1 double root is the same as 2 equal roots.)
12. Given that $z=-1+4 i$, calculate the value of the following expressions. Show how these values are obtained and represented on the Argand plane.
(a) $z . i^{3}$
(b) $z+1$
(c) $2 z+z^{*}$
(d) $Z . Z^{*}$
7. Thabo is practising division of complex numbers of the form $a+b i$, where $a, b \in \mathbb{R}$. He notices that:
$\frac{3+2 i}{-2+3 i}=-i, \frac{5-7 i}{7+5 i}=-i$ and $\frac{4+5 i}{-5+4 i}=-i$.
for p and q if $(3+i)(p+q i)=-4+2 i$.
$b i$ is a root of the quadratic equation $x^{2}+k x+t=0$,
eta's Formulae to show that $a^{2}+b^{2}=t$ and $2 a+k=0$.
Prove that $\frac{a+b i}{-b+a i}=-i$ for all $a, b \in \mathbb{R}$.
(IEB 2018)
8. Given that $m=4+2 i$ and $n=-2-i$.

Simplify the following expressions; show all calculations:
(a) $m-2 n^{*}$
(b) $\frac{m}{n}$

RULES FOR DERIVATIVES

1. The Constant rule
$f(x)=k$ where k is a constant, then $f^{\prime}(x)=0$.
2. The Power rule
$f(x)=x^{n}$ where $n \in \mathbb{R}$, then $f^{\prime}(x)=n x^{n-1}$.
3. The Constant-Power rule
$D_{X}[k . f(x)]=k . f^{\prime}(x)$
The derivative of a constant multiplied by a function is equal to the constant multiplied by the derivative of the function.

Thus we have:

$$
\begin{array}{ll}
f(x)=x=x^{1} & \Rightarrow f^{\prime}(x)=1 x^{0}=1 \\
f(x)=x^{2} & \Rightarrow f^{\prime}(x)=2 x^{1}=2 x \\
f(x)=x^{3} & \Rightarrow f^{\prime}(x)=3 x^{2} \\
f(x)=\frac{1}{x}=x^{-1} & \Rightarrow f^{\prime}(x)=-1 x^{-2}=\frac{-1}{x^{2}} \\
f(x)=\sqrt{x}=x^{\frac{1}{2}} & \Rightarrow f^{\prime}(x)=\frac{1}{2} x^{-\frac{1}{2}}=\frac{1}{2 \sqrt{x}} \\
f(x)=x^{\pi} & \Rightarrow f^{\prime}(x)=\pi x^{\pi-1}
\end{array}
$$

4. The Sum (Difference) rule

$D_{x}[f(x) \pm g(x)]=f^{\prime}(x) \pm g^{\prime}(x)$
The derivative of a sum (difference) of functions is equal to the sum (difference) of the derivatives of the functions.

ons

$x)=6 x$
(b) $f^{\prime}(x)=-\mathbf{6 x}+\mathbf{5}$
$f(x)=5 x^{-1}+x^{\frac{1}{2}}$,
$f^{\prime}(x)=-5 x^{-2}+\frac{1}{2} x^{-\frac{1}{2}}=\frac{-5}{x^{2}}+\frac{1}{2 \sqrt{x}}$
$f(x)=3 x^{-3}+x^{-2}-3 x^{-1}+1$
$f^{\prime}(x)=-9 x^{-4}-2 x^{-3}+3 x^{-2}=\frac{-9}{x^{4}}-\frac{2}{x^{3}}+\frac{3}{x^{2}}$

cise 10.3

(Solutions on p. 63 in the Answer book)
ermine the derivatives of the following functions:
$f(x)=x^{2}+3$
(b) $f(x)=5 x^{2}+2 x$
$f(x)=4 x^{2}-x+7$
(d) $f(x)=\sqrt{x}+4$
$f(x)=3 x-\frac{1}{\sqrt{x}}$
(f) $f(x)=x^{3}-6 x^{2}+9 x-4$
$f(x)=\frac{x^{3}}{3}+x^{2}-5 x+1$
(h) $f(x)=\frac{x^{2}-4 x}{x}$
$f(x)=\frac{3 x^{2}+x-1}{x}$

Find $\frac{d y}{d x}$ given $y=3 x^{3}+5 x^{2}-4 x-3$
Find $g^{\prime}(x)$ given $g(x)=\frac{4 x^{2}-1}{2 x+1}$
d the following derivatives. Leave answers with positive exponents:
(a)
$D_{x}\left[x^{2}-\frac{1}{x^{3}}\right]$
(b) $\frac{d}{d x}\left(\frac{1+x^{\frac{3}{2}}}{\sqrt{x}}\right)$
(c) $D_{t}\left[\frac{\sqrt{t}-3 t}{\sqrt{t}}\right]$
(d) $\frac{d}{d s}\left(\frac{2 s-s^{2}+3 s^{3}}{s^{2}}\right)$ (e) $f^{\prime}(x)$ if $f(x)=\frac{2 x^{3}-x^{2}-8 x+4}{x-2}$

CASE 8: Integration of rational functions with degree of

 numerator equal or one higher than degree of denominator.In Chapter 17: Further Derivatives, we manipulated rational functions when considering asymptotes for graphs. This process can also be used in integration.

Worked Example 27

Given: $\int \frac{x^{2}+x+1}{x^{2}+1} d x$
We first manipulate the expression:

$$
\begin{aligned}
\frac{x^{2}+x+1}{x^{2}+1} & =\frac{x^{2}+1+x}{x^{2}+1} \\
& =1+\frac{x}{x^{2}+1}
\end{aligned}
$$

This can also be done using Long Division.
$\int\left(1+\frac{x}{x^{2}+1}\right) d x=\int 1 d x+\int \frac{x}{x^{2}+1} d x=x+\int \frac{2 x}{2} \cdot \frac{1}{x^{2}+1} d x$

$$
\text { 解 } x^{2}+1 \geq 1>0=x+\frac{\ln \left(x^{2}+1\right)}{2}+c
$$

Ch 18: Gr 12 INTEGRATION
d Example 29
$\frac{x^{2}-2}{x+1} d x$
degree of the numerator is one more than that of the denominator.
$=\frac{x(x+1)-x-2}{x+1}$
$=\frac{x(x+1)-(x+1)+1-2}{x+1}$
$=x-1-\frac{1}{x+1}$
$\left.1-\frac{1}{x+1}\right) d x$
$-\ln |x+1|+c$
se 18.12
We may prefer to
do Long Division.
of the following questions, first manipulate the expression before aing the integral.
$\frac{-1}{+1} d x$
$\frac{-2 x+3}{x} d x$
2. $\int \frac{x+3}{x-5} d x$
4. $\int \frac{x^{3}}{x^{2}-4} d x$
5. $\int \frac{x^{2}}{x-2} d x$

$$
\begin{aligned}
\frac{x^{2}+x-6}{x^{2}-5 x+6}=\frac{(x+3)(x-2)}{(x-3)(x-2)} & =\frac{x+3}{x-3}, x \neq 2 \\
& =\frac{x-3+6}{x-3}=1+\frac{6}{x-3}
\end{aligned}
$$

$\int\left(1+\frac{6}{x-3}\right) d x=x+6 \ln |x-3|+c$
7. $\int \frac{x^{3}}{x^{2}+1} d x$
6. $\int \frac{x^{2}-5 x+3}{x+2} d x$

PREPARING FOR UNIVERSITY

VARSITY MATHS PREP - a self-study book

Compiled by Emeritus Professor John Webb in response to the dire challenges experienced by first year university students.

By working through the problem sets in this self-study book, students will develop and test appropriate higher education skills on their own. Learners preparing for NBTs or Level 4 questions will certainly benefit from the techniques and flexible thinking acquired through dedicated, independent focus on the higher order questions in this book.

GRADE 12 EULER RULER

This $30 \mathrm{~cm} \times 7 \mathrm{~cm}$ ruler includes all the information provided on the formula sheet in the National or IEB matric exam. Ready access to this information will ensure that learners become familiar with applying it successfully.

The Answer Series Mathematics publications have been designed to develop ...

- conceptual understanding
- reasoning techniques
- procedural fluency \& adaptability
- a variety of strategies for problem-solving

Varsity Maths Prep

CLASS TEXT \& STUDY GUIDE

The Answer Series Maths University Preparation study guide is an essential resource if you're serious about an academic, maths-oriented future.

Emeritus Professor John Webb compiled this book to help prospective university learners negotiate the dire challenges they face in Mathematics, as well as courses in

This self-study guide allows you to develop in areas such as:

- Algebraic expertise
- Trigonometry skills
- Problem-solving
- Geometric insight
- Numerical facility
- Logical reasoning
- Flexible thinking

These skills cannot be taught. They are best achieved without assistance, prior to entering university.
independent use of this outstanding booklet will contribute significantly to their success in the National Benchmark tests (NBTs)

HOW TO USE THIS BOOK

- Start with the Basic Arithmetic, Basic Algebra and Basic Geometry problem sets. The later sets are a little harder, and may contain problems requiring ideas you will have gained from the earlier sets.
- Give yourself at least an hour or two to tackle a problem set, doing the problems in one continuous concentrated session.
- Don't allow yourself to be distracted by tweets or emails. Switch off all mobile devices!
- You don't have to do the problems in order. It a problem looks complicated, look again. It may have a simple solution if viewed from a different perspective. If you are still baffled, don't give up quickly. Come back to it later.
- No diagrams have been given. That is deliberate. It is a useful skill to be able to draw a figure from a written description.
- No calculators! You should be able to do simple arithmetic in your head, and none of the problems requires more than pencil-and-paper calculations.
- No formula sheet! You must have the standard trig and algebra formulas at your fingertips.
- These problems are for you to do by yourself, and certainly not with an "extra lessons tutor". However, working through them with a friend could be useful.
- When you have finished a problem set, check your answers for quick feedback. Before looking at the solutions, go back to any problem you got wrong and see if you can find your mistake. If you can't, look at the full solution.
- Even if you have got a full house of correct answers, read the solutions carefully. You may have got the right answer by luck, or by using a wrong method. The solutions may also give you alternative approaches, quicker methods and extra insights into the problems.
- Every wrong answer indicates a possible weakness in your mathematical background that needs to be fixed before your first Maths I lecture at your chosen university

BASIC ALGEBRA PROBLEMS

1. When $(3 a-2 b)(7 b-5 c)(6 c-9 a)$ is multiplied out, what is the coefficient of $a b c$?
(A) 40
(B) 36
(C) 44
(D) 49
(E) 52
2. $\left(a^{-1}+b^{-1}\right)^{-2}$ is equal to
(A) $a^{2}+b^{2}$
(B) $a^{-2}+b^{-2}$
(C) $\frac{a^{2} b^{2}}{(a+b)^{2}}$
(D) $\frac{a^{2}+b^{2}}{a^{2} b^{2}}$
(E) $2(a+b)$
(A) $\frac{1}{2}(6 \pm \sqrt{ } 7)$
(B) -3 and $\frac{1}{3}$
(C) $\frac{1}{3}(4 \pm \sqrt{ } 7)$
(D) 1 and $-\frac{1}{9}$

$$
\text { (E) } \frac{1}{6}(4 \pm \sqrt{14})
$$

4. Which of the following is not a factor of $6 x^{4}+5 x^{3}-75 x^{2}+10 x+24$?
(A) $2 x+1$
(B) $x-3$
(C) $x+4$
(D) $3 x-2$
(E) $x-5$
5. $\frac{3}{x-2}-\frac{2}{x+3}$ is equal to
(A) $\frac{x+13}{x^{2}+x-6}$
(B) $\frac{x-5}{x^{2}-x-6}$
(C) $\frac{2 x+13}{x^{2}-x-6}$
(D) $\frac{x+13}{x^{2}-x+6}$
(E) $\frac{x-8}{2 x^{2}+x-3}$
6. When $\left(3 x^{2}-2 x+6\right)\left(x^{2}-4 x+7\right)\left(x^{2}+3 x-1\right)$ is multiplied out to the form $a x^{6}+b x^{5}+c x^{4}+d x^{3}+e x+f$, what is the value of $a+b+c+d+e+f$?
(A) 84
(B) 96
(C) 72
(D) 108
(E) 120
7. The set of all real numbers x such that $x^{2}<5 x+24$ is the interval
(A) $(-3,8)$
(B) $(1,7)$
(C) $(3,8)$
(D) $(-8,-3)$
(E) $(-2,4)$
8. The sum $\sum_{n=1}^{\infty}\left(\frac{2}{3}\right)^{n}$ is equal to
(A) $\frac{3}{2}$
(B) 2
(C) $\frac{2}{3}$
(D) 3
(E) 6
9. If

$$
\begin{aligned}
& 2 x+5 y+4 z=13 \\
& 5 x+4 y+2 z=15 \\
& 4 x+2 y+5 z=16
\end{aligned}
$$

then $x+y+z$ is equal to
(A) 3
(B) 4
(C) 5
(D) 6
(E) 7

PROBLEMS 5

1. The sides of quadrilateral $A B C D$ are produced: $A B$ is produced to $E, B C$ is produced to F and $C D$ is produced to G. If $\angle E B C=79^{\circ}, \angle F C D=64^{\circ}$ and $\angle G D A=127^{\circ}$, then $\angle B A D$ is equal to
(A) 61°
(B) 72°
(C) 83°
(D) 90°
(E) 105°
2. The graph of $y=(x-3)(1-x)$ is tangent to the graph of $y=k x^{2}$. Determine k.
(A) $\frac{2}{5}$
(B) $\frac{1}{3}$
(C) -2
(D) $\sqrt{2}$
(E) $-\frac{1}{2}$
3. The solution of the inequality $\log _{2} x+\log _{2}(x-3)<2$ is
(A) $-1<x<4$
(B) $x>0$
C) $0<x<4$
(D) $3<x<4$
(E) $x>3$
4. The roots of the equation $x^{2}-2 x-7=0$ are a and b. Which of the following equations has roots $a+1$ and $b+1$?
(A) $x^{2}-3 x-8=0$
(B) $x^{2}-x-6=0$
(C) $x^{2}-4 x-4=0$
5. In triangle $A B C$, with $A B=c, B C=a$ and $C A=b$,

$$
\frac{4 \times \text { Area } A B C}{b^{2}+c^{2}-a^{2}}
$$

is equal to
(A) $\cos A$
(B) $\tan A$
(C) $\sin 2 A$
(D) $\frac{1}{2} \cos A$
(E) $2 \sin A$
6. If $f(x)=3 x+5$ and $g(x)=4 x+7$, then $g(f(x))-f(g(x))$ is equal to (A) x
(B) 0
(C) $x+1$
(D) 1
(E) $x-1$
tively, so that $B D=B E$ and $C E=C F$. If $\angle A=x$, what is the size of $\angle D E F$?
(A) $90^{\circ}+x$
(B) $180^{\circ}-2 x$
(C) $90^{\circ}+2 x$
(D) $90^{\circ}-\frac{1}{2} x$
(E) $180^{\circ}-x$
8. Let f be a function defined by the equation $f(x)=3^{x}$, where x is a real number. Which of the following is true for all real numbers a and b ?
(A) $f(a b)=f(a)+f(b)$
(B) $f(a b)=f(a) f(b)$
(C) $f(a b)=3 f(a b-1)$
(D) $f(a+b)=f(a)+f(b)$
(E) $f(3 a b)=f(a b+3)$

Teacher WhatsApp Support Groups

Grade 10-12 (Started late in 2021)

○ ADMIN Group (386)
○ CHAT Group (245)

Posted at 13:44

Answered at 13:50

Grade 7 - 9 (Started 15 Sept 2022)

\bigcirc ADMIN Group (9)

\bigcirc CHAT Group (15)

Introduction to Problem Solving

Problem Solving is part of our curriculum, and we need to expose our learners to it on a regular basis. The first strategy we are going to be looking at is drawing a table to help them find the answer. You don't have to fill in all the entries in the table, but you use it to see what is happening. In these five problems below, draw a table in order to find the answer. Answers will be posted in a few days' time.

1. A boy decides to pick up pieces of litter. On the first day he picks up 10 pieces, the second day 20 pieces, the third day 30 pieces, and so on. Determine the fewest number of days it will take him to pick up at least 500 pieces of litter in total?
2. Two people go running. Andile runs every Monday, Wednesday and Friday. Sophie always takes two days off between runs. If they both run on a Monday, on what day of the week will they both next run again?
3. A car sets off on a journey at 08 hOO and travels at $60 \mathrm{~km} / \mathrm{h}$. A second car leaves on the same route an hour later. If the second car travels at $75 \mathrm{~km} / \mathrm{h}$, at what time will it catch up to the first car?
4. A girl is 8 years old and her mother is 30 years old. In how many years' time will the daughter be half the mother's age?
5. There are 18 animals on a farm. Some are chickens and some are cows. If there are 50 legs in total, how many chickens are there?

Grade 7 (Started 14 Sept 2022)
O ADMIN Group (55)
O CHAT Group (12)

Susan Carletti

Welcome to this group everybody! We are very excited to see the energy and enthusiasm of you all! This is a chat group - feel free to ask questions, answer each other's questions, and just generally share with other Grade 7 colleagues. From our side, we will be focussing on problem solving. Every assessment is supposed to have 10% of the marks on PS. We owe it to our learners to expose them to it in class. PS can be daunting so we are going to break it down into strategies that you can teach your learners. We encourage you to work through these yourselves, and give them to your learners as well! Solutions will be posted after a few days. We hope you enjoy being on this group! If you find the participation too much, please let Jenny know and she can add you to the Admin only group!

Rose Nedzingahe

"As promised a photo with some of the Roedean Academy girls with your books.
The girls just love the books - it makes such a huge difference.
Thank you for all your help."

Sarah

ALL ACCESS e-BOOKS for Schools

ALL ACCESS. ONE LICENCE

 FREE!
The Answer Series Unbounded

ONE licence for ONE year includes ALL subjects in English \& Afrikaans

Snapplify
ANNUAL FEE pricing per grade

Access to ALL our Grades 10-12 subjects Access to ALL our Grade 8 \& 9 subjects Access to ALL our Grade 8 subjects

R499-50\% = R249 per learner
R219-50\% = R109 per learner
R90-50\% = R45 per learner

NB minimum of 10 licences to qualify for this OFFER A PAYMENT PLAN CAN BE ARRANGED Email: schools@theanswerseries.co.za

Click here to learn more!

NOW
50\%
discount

Keep in touch!

www.theanswer.co.za
info@theanswerseries.co.ra
f The Answer Series - Study Guides
(0) @theanswerseries
(1) WhatsApp: 0643718715

Tel: (021) 6710837
jenny@theanswerseries.co.za
Cell 0833028170

We would love to hear from you!

[^0]: Copyright © The Answer Series: Photocopying of this material is illegal

