Mathematics Companion

ANSWER BOOK

Marilyn Buchanan, et al.

All Terms

Grade 9 Maths Companion Answer Book

The Grade 9 Maths Companion Workbooks are comprehensive and creative in their coverage of the CAPS curriculum. They are a valuable tool for both the learner and the teacher. These workbooks help to ensure that all learners are brought up to a common standard, filling all gaps that may have opened in their mathematical content.

Key features:

- Arithmetical concepts move seamlessly into algebraic development
- Suitable as a class workbook and for self-study
- A full set of solutions complete the Companion set, making corrections simple and quick
- Worked examples, notes and exercises guide learners to a thorough understanding
- End-of-unit test assess progress consistently

THE
ANSWER
SERIES Your Key to Exam Success

GRADE

CAPS

ALL TERMS

Mathematics Companion

ANSWER BOOK

Marilyn Buchanan, et al.

GRADE 9
MATHEMATICS 2-in-1

- questions in topics
- examination papers

Gr 9 Maths Companion - Schedule of work

ANSWER BOOK

TERM 1				
UNIT	TOPIC	CAPS TOPIC NR.	WEEKS	PAGE
1	The Number System	1.1	1	1
2	Rate, Ratio and Proportion	1.1	1	10
3	Financial Maths	1.1	1	18
4	Integers	1.3	1	21
5	Common Fraction Revision	1.4	0,5	25
6	Decimals Revision	1.5	0,5	29
7	Algebra: Exponents	1.2	2	32
8	Numeric and Geometric Patterns	2.1	1	40
9	Functions and Relations Part 1	2.2	1	45
10	Algebraic Expressions Part 1	2.3	1	48
11	Equations Part 1	2.4	1	55
			11 weeks	

TERM 2				
UNIT	TOPIC	$\begin{gathered} \text { CAPS } \\ \text { TOPIC NR. } \end{gathered}$	WEEKS	PAGE
12	Geometry Part 1: Lines and Angles	3.3	2	61
13	Constructions Part 1: Angles and Triangles	3.5	1	66
14	Constructions Part 2: Quadrilaterals	3.5	1	73
15	Congruency	3.1	1	76
16	Similarity	3.1	1	80
17	The Theorem of Pythagoras	4.3	1	84
18	2D Shapes: Perimeter and Area	4.1	1	89
			8 weeks	

TERM 3				
UNIT	TOPIC	CAPS TOPIC NR.	WEEKS	PAGE
19	Functions and Relations Part 2	2.2	0,5	95
20	Algebraic Expressions Part 2	2.3	1	97
21	Factorisation	2.3	2	101
22	Equations Part 2	2.4	1	107
23	Graphs	2.5	2,5	111
24	3D Shapes: Surface Area and Volume	4.2	1	122
			$\mathbf{8}$ weeks	

TERM 4					
UNIT		TOPIC	CAPS TOPIC NR.	WEEKS	PAGE
25	Transformations:	Translations, Reflections and Enlargements	3.4	2	126
26	Geometry of 3D	Objects	3.2	1	131
27	Data Handling (S	atistics)	5.1, 5.2 \& 5.3	2,5	133
28	Probability		5.4	1,5	138
				7 weeks	
EXAM MEMOS					
				PAGE	
Paper A				M1	
Paper B1				M10	
Paper B2				M15	

3.4 No. Can't have a fraction of a winner.
$3.5 \quad p=\frac{12 \text { million }}{n}$
$4.1 \quad y=\frac{\mathbf{2 4}}{\boldsymbol{x}}$

QUESTION 1

1.1 chocolate : strawberry $=5: 4$

$$
\begin{align*}
\text { Number of chocolate } & =\frac{5}{9} \text { of } 180 \\
& =100 \\
\text { Number of strawberry } & =\frac{4}{9} \text { of } 180 \\
& =80 \tag{3}
\end{align*}
$$

1.2 chocolate : strawberry

$$
5: 4
$$

$$
x: 140
$$

$$
\frac{x}{140}=\frac{5}{4}
$$

$$
x=\frac{5}{4} \times 140
$$

$$
=175
$$

i.e. $\mathbf{1 7 5}$ chocolate lollipops

QUESTION 2

$$
\begin{aligned}
& =\begin{aligned}
15000: 25000 \\
3: 5
\end{aligned} \\
& \begin{aligned}
\text { Sam's share } & =\frac{3}{8} \text { of } 80000 \\
& =\text { R30 } 000
\end{aligned}
\end{aligned}
$$

$$
\text { Ayanda's share }=\frac{5}{8} \text { of } 80000
$$

$$
\text { = R50 } 000
$$

QUESTION 3

3.1 | \boldsymbol{x} | 5 | 12 | $\mathbf{2 4}$ |
| :---: | :---: | :---: | :---: |
| y | 20 | $\mathbf{4 8}$ | 96 |

3.2

\boldsymbol{x}	4	3	$\mathbf{6}$
y	12	$\mathbf{1 6}$	8

SUBSTITUTION

EXERCISE 4.3

$1.1 a b-c+2 d$
$=(-2)(-3)-(-4)+2(-5)$
$=6+4-10$
$=0$
$1.3 \quad a-b \times c-d$
$=(-2)-(-3)(-4)-(-5)$
$=-2-12+5$
$=-9$
$1.5(a-b) \times(c-d)$
$=(-2-(-3)) \times(-4-(-5))$
$=(1) \times(1)$
$=1$

$$
\begin{array}{rl}
1.2 & a+b \times c+d \\
= & (-2)+(-3) \times(-4)+(-5) \\
= & -2+12-5 \\
= & 5
\end{array}
$$

$1.4 \quad(a-b) \times c-d$
$=(-2-(-3)) \times(-4)-(-5)$
$=(1) \times(-4)+5$
$=-4+5$
$=1$
$1.6 \quad b c-a d$
$=(-3)(-4)-(-2)(-5)$
$=12-10$
$=2$
$1.7 \quad(a-b)(b-c)(c-d)$
$=(-2-(-3))((-3)-(-4))((-4-(-5))$
$=(1)(1)(1)$
$=1$
$1.8 \quad a(b+c)-b(a+b)$
$=(-2)(-3-4)-(-3)(-2-3)$
$=(-2)(-7)+3(-5)$
$=14-15$
$=-1$
$1.9 \quad \frac{(d-a)(b-d)-c(d-b)}{a(b-c)+d}$
$=\frac{(-5-(-2))(-3-(-5))-(-4)(-5-(-3))}{(-2)(-3-(-4))+(-5)}$
$=\frac{(-3)(2)-(-4)(-2)}{(-2)(1)-5}$
$=\frac{-6-8}{-7}$

$=2$
$1.10(a-c)(b+d)-a(c+d)$
$=(-2-(-4))(-3-5)-(-2)(-4-5)$
$=(2)(-8)+2(-9)$
$=-16-18$
$=-34$
$2.1 y^{2}+z^{3}$
$=(-3)^{2}+(-2)^{3}$
$2.2 w^{2}-x^{2}-y^{2}$
$=9-8$
$=(-5)^{2}-(-4)^{2}-(-3)^{2}$
$=1$
$=25-16-9$
. $3 x y^{2}+w z^{3}$
$=(-4)(-3)^{2}+(-5)(-2)^{3}$
$2.4 \quad(w-x)^{2}-(\mathrm{y}-z)^{3}$
$=(-4)(9)-5(-8)$
$=(-5+4)^{2}-(-3+2)^{3}$
$=-36+40$
$=4$
$=(-1)^{2}-(-1)^{3}$
$=1+1$
$=2$
$2.5 \quad x y z-x(w-y)^{2}-(x-z)^{3}$
$=(-4)(-3)(-2)-(-4)(-5+3)^{2}-(-4+2)^{2}$
$=-24+4(4)-4$
$=-12$
$2.6 \sqrt[3]{w^{2}-z}-\sqrt{z^{2}-w}$
$=\sqrt[3]{25+2}-\sqrt{4+5}$
$=\sqrt[3]{27}-\sqrt{9}$
$=3-3$
$=0$
$2.7 \sqrt{w x-(y+z)}-\sqrt{x y-x}$
$2.8 \sqrt{1-x y z}-\sqrt{2-(x+y)}$
$=\sqrt{20-(-5)}-\sqrt{12+4}$
$=\sqrt{1+24}-\sqrt{2-(-7)}$
$=\sqrt{25}-\sqrt{16}$
$=\sqrt{25}-\sqrt{9}$
$=5-4$
$=5-3$
$=1$
$=2$
$2.9 \sqrt{x(x+y+z)}-\sqrt[3]{x+y-w x}$
$=\sqrt{(-4)(-9)}-\sqrt[3]{-7-20}$
$=\sqrt{36}-\sqrt[3]{-27}$
$=6-(-3)$
$=9$

EXERCISE 10.7

1. $\left(m^{2}+4 m\right) \div m$
$=\boldsymbol{m}+4$
2. $\frac{6 x^{3}+2 x^{2}}{2 x}$
$=3 x^{2}+x$
3. $\left(8 a^{2} b^{3}+4 a^{2} b-2 a b\right) \div 2 a b$
$=4 a b^{2}+2 a-1$
4. $\left(6 x^{2}+4 x+8\right) \div 2$

$$
=3 x^{2}+2 x+4
$$

4. $\frac{12 a^{2}+6 a}{6 a}$
$=2 a+1$
5. $\frac{12 x^{3}+8 x^{2}+6}{6 x}$
$=2 x^{2}+\frac{4 x}{3}+\frac{1}{x}$
6. $(2 a+4) \div 2+\left(3 a^{2}+6 a\right) \div 3 a-2 a$
$=(a+2)+(a+2)-2 a$
$=a+2+a+2-2 a$
$=4$
7. $\left(6 b^{2}-8 b\right) \div 2 b+\left(15 b^{3}-20 b^{2}\right) \div\left(-5 b^{2}\right)$
$=(3 b-4)+(-3 b+4)$
$=3 b-4-3 b+4$
$=0$
8. $\frac{8 m^{2}+12 m}{4 m}+\frac{6 m^{2}-12 m^{3}}{6 m^{2}}$
$=(2 m+3)+(1-2 m)$
$=2 m+3+1-2 m$
$=4$
9. $\frac{9 n^{2}+21 n}{3 n}+\frac{8 n^{3}+12 n^{2}+20 n}{-4 n}+\frac{4 n^{2}-4}{2}$
$=(3 n+7)+\left(-2 n^{2}-3 n-5\right)+\left(2 n^{2}-2\right)$
$=3 n+7-2 n^{2}-3 n-5+2 n^{2}-2$
$=0$
10. $\frac{6 p^{2}+10 p}{2 p}-\frac{9 p^{3}+12 p^{2}+15 p}{3 p}+\frac{6 p^{2}+2 p}{2}$
$=(3 p+5)-\left(3 p^{2}+4 p+5\right)+\left(3 p^{2}+p\right)$
$=3 p+5-3 p^{2}-4 p-5+3 p^{2}+p$
$=0$
11. $\frac{5 x+10}{5 x}-\frac{8 x^{2}-12 x+8}{4 x}-\frac{6 x-12}{3}$
$=\left(1+\frac{2}{x}\right)-\left(2 x-3+\frac{2}{x}\right)-(2 x-4)$
$=1+\frac{2}{x}-2 x+3-\frac{2}{x}-2 x+4$
$=8-4 x$

EXERCISE 10.8

$$
\text { 1. } \begin{aligned}
& (x+3)(x+4) \\
= & x^{2}+4 x+3 x+12 \\
= & x^{2}+7 x+12
\end{aligned}
$$

$$
\text { 3. } \quad(x+1)(x+12)
$$

$$
=x^{2}+12 x+x+12
$$

$$
=x^{2}+13 x+12
$$

5. $(x-6)(x+2)$
$=x^{2}+2 x-6 x-12$
$=x^{2}-4 x-12$
6. $(x+3)(x-4)$
$=x^{2}-4 x+3 x-12$
$=x^{2}-x-12$
7. $(x+1)(x-12)$
$=x^{2}-12 x+x-12$
$=x^{2}-11 x-12$
8. $(x-6)(x-2)$
$=x^{2}-2 x-6 x+12$
$=x^{2}-8 x+12$
9. $(x+6)(x+6)$
$=x^{2}+6 x+6 x+36$
$=x^{2}+12 x+36$

$$
\begin{aligned}
\text { 2. } & (x+6)(x+2) \\
= & x^{2}+2 x+6 x+12 \\
= & x^{2}+8 x+12 \\
\text { 4. } \quad & (x-3)(x+4) \\
= & x^{2}+4 x-3 x-12 \\
= & x^{2}+x-12
\end{aligned}
$$

6. $(x-1)(x+12)$
$=x^{2}+12 x-x-12$
$=x^{2}+11 x-12$
7. $(x+6)(x-2)$

$$
=x^{2}-2 x+6 x-12
$$

$$
=x^{2}+4 x-12
$$

10. $(x-3)(x-4)$

$$
\begin{aligned}
& =x^{2}-4 x-3 x+12 \\
& =x^{2}-7 x+12
\end{aligned}
$$

12. $(x-1)(x-12)$

$$
=x^{2}-12 x-x+12
$$

$$
=x^{2}-13 x+12
$$

14. $(x+5)(x+7)$
$=x^{2}+7 x+5 x+35$
$=x^{2}+12 x+35$

15. $\frac{2}{3}(x+5)-\frac{3}{4}(x+1)=\frac{1}{2}(x-3)$

$$
\therefore 8(x+5)-9(x+1)=6(x-3)
$$

$$
\therefore 8 x+40-9 x-9=6 x-18
$$

$$
\therefore 8 x-9 x-6 x=-18-40+9
$$

$$
\therefore-7 x=-49
$$

$\therefore x=7$

EXERCISE 11.4

1. $\frac{1}{x}+3=5$
$\therefore 1+3 x=5 x$
$\therefore 3 x-5 x=-1$
$\therefore-2 x=-1$
$\therefore x=\frac{1}{2}$
2. $\frac{1}{3 x}+\frac{2}{3}=\frac{1}{x}$
$(x \neq 0)$

$$
\begin{aligned}
\therefore 1+2 x & =3 \\
\therefore 2 x & =2 \\
\therefore x & =1
\end{aligned}
$$

5. $\frac{3}{2 x}-\frac{1}{4}=1-\frac{9}{4 x} \quad(x \neq 0)$

$$
\therefore 6-x=4 x-9
$$

$(x \neq 0)$

$$
\therefore-x-4 x=-9-6
$$

$$
\therefore-5 x=-15
$$

$$
\therefore x=3
$$

7. $\frac{x-2}{2 x}+\frac{1}{x}+\frac{3}{2}=0 \quad(x \neq 0)$
$\therefore x-2+2+3 x=0$
$\therefore 4 x=0$
$\therefore x=0$
No solution.
8. $\frac{1}{x}+\frac{2}{3}=2$

$$
\therefore 3+2 x=6 x
$$

$\therefore 2 x-6 x=-3$
$\therefore-4 x=-3$
$\therefore x=\frac{3}{4}$
4. $\quad \frac{7}{2 x}-\frac{2}{3}=\frac{1}{2} \quad(x \neq 0)$

$$
\therefore 21-4 x=3 x
$$

$(x \neq 0)$
12. $\frac{1}{2}+\frac{3}{x}=\frac{x+6}{2 x}$
$(x \neq 0)$
$\therefore x+6=x+6$

$$
\therefore-4 x-3 x=-21
$$

Identity: true for all values of x except $x=0$

$$
\therefore-7 x=-21
$$

$$
\therefore x=3
$$

13. $\frac{2}{x}+\frac{2}{x(x-2)}=\frac{1}{x-2} \quad(x \neq 0, x \neq 2)$

$$
\begin{aligned}
\therefore 2(x-2)+2 & =x \\
\therefore 2 x-4+2 & =x \\
\therefore 2 x-x & =2 \\
\therefore x & =2
\end{aligned}
$$

No solution.
8. $\frac{1}{2 x}-\frac{1}{3}=\frac{5}{12 x}$

$$
\therefore 6-4 x=5
$$

$\therefore-4 x=-1$
$\therefore x=\frac{1}{4}$
$(x \neq 0)$
14

$$
\begin{aligned}
\frac{3}{x} & =\frac{2}{x-1}-\frac{2}{x(x-1)} \\
\therefore 3(x-1) & =2 x-2 \\
\therefore \quad 3 x-3 & =2 x-2 \\
\therefore x & =1
\end{aligned}
$$

No solution.

$$
3 x-56^{\circ}=49^{\circ}-4 x
$$

$$
\therefore 7 x=105^{\circ}
$$

$$
x=15^{\circ}
$$

$$
75^{\circ}-2 x+5 x=180^{\circ}
$$

$$
\therefore 3 x=180^{\circ}-75^{\circ}
$$

$$
\therefore 3 x=105^{\circ}
$$

$$
\therefore x=35^{\circ}
$$

$$
\hat{\mathrm{G}}_{1}=3 x+28^{\circ} \quad \text { (corresp. } \angle ' \mathrm{~s},
$$

ex ex

$$
\text { (alt. } \angle \text { 's, }
$$

$$
E H \| A D)
$$

$$
\begin{aligned}
& 3.2 \\
& \hat{\mathrm{C}}_{1}=180^{\circ}-\left(75^{\circ}-x\right) \text { (co-int. } \angle \text { 's, } \\
& =105^{\circ}+x \\
& \text { PQ||RS) } \\
& \therefore 105^{\circ}+x=8 x-35^{\circ} \quad \text { (corresp. } \angle \text { 's, } \\
& \therefore 105^{\circ}+35^{\circ}=8 x-x \quad \text { AD \|EH) } \\
& \therefore 140^{\circ}=7 x \\
& \therefore x=20^{\circ} \\
& 3.3 \\
& \hat{\mathrm{c}}_{1}=180^{\circ}-\left(5 x-20^{\circ}\right) \quad \text { (co-int. } \angle \text { 's, } \\
& \text { CD\|EF) } \\
& \hat{C}_{2}=180^{\circ}-2 x \text { (co-int. } \angle \mathrm{s}, \mathrm{AB} \| C D \text {) } \\
& \therefore 4 x+25^{\circ}+180^{\circ}-5 x+20^{\circ}+180^{\circ}-2 x \\
& =360^{\circ} \text { (adj. } \angle \text { 's around point C) } \\
& \therefore-3 x=-45^{\circ} \\
& \therefore x=15^{\circ}
\end{aligned}
$$

END-OF-UNIT 12 TEST

40 marks 40 minutes

QUESTION 1

$1.1 \quad 90^{\circ}-x+5 x+30^{\circ}=180^{\circ}$
(adj. L's on straight line AC)

QUESTION 2

2.1 In $\triangle K L M$ and $\triangle O N M$

1. $K L=N O$
2. $\hat{K}=\hat{O}$
3. $\hat{L}=\hat{N}$
alt. $\angle \mathrm{s}, \mathrm{KL} \| \mathrm{NO}$
alt. $\angle \mathrm{s}, \mathrm{KL} \|$ NO
$\therefore \Delta \mathrm{KLM} \equiv \Delta \mathrm{ONM}$

2.2 In $\triangle P Q R$ and $\triangle P S R$
4. $P R$ is common
5. $\hat{R}_{1}=\hat{R}_{2}=90^{\circ}$
6. $Q R=R S$
$\therefore \Delta \mathbf{P Q R} \equiv \Delta \mathbf{P S R}$

(4)
2.3 In $\triangle A B C$ and $\triangle D E F$
7. $A B=D E$
8. $\hat{A}=\hat{D}$
9. $B \hat{C} A=E \hat{F} D$
$\therefore \triangle A B C \equiv \triangle D E F$
$\therefore B C=E F$
$\triangle \mathrm{ABC} \equiv \triangle \mathrm{DEF}$
2.4 In $\triangle A C B$ and $\triangle D C E$
given
alt. $\angle \mathrm{s}, \mathrm{AB} \| E D$
alt. $\angle \mathrm{s}, \mathrm{BC} \| \mathrm{FE}$
SAA
10. $A C=C D$
given
11. $\hat{A}=\hat{D}$
12. $\hat{B}=\hat{E}$
$\therefore \triangle A B C \equiv \triangle D E C$
$B C=E C$
alt. $\angle \mathrm{s}, \mathrm{AB} \| \mathrm{ED}$
alt. $\angle \mathrm{s}, \mathrm{AB} \| E D$
SAA
$\triangle A B C \equiv \triangle D E C$

2.5 In $\triangle \mathrm{JKL}$ and \triangle MLK
13. $J \hat{K} L=M \hat{L} K=90^{\circ}$ given
14. $\mathrm{JL}=\mathrm{MK}$
given
15. $K L$ is common
$\therefore \Delta \mathrm{JKL} \equiv \Delta \mathrm{MLK}$
$90^{\circ} \mathrm{HS}$
$\therefore \mathrm{JK}=\mathrm{ML}$

QUESTION 3

3.1 In $\triangle P Q R$ and $\triangle T S R$

1. $P Q=T S$
given
2. $\hat{Q}=\hat{S}=x$
3. $Q R=S R$
$\therefore \Delta \mathbf{P Q R} \equiv \Delta \mathbf{T S R}$

> given
given
SAS
3.2 $\mathrm{PR}=\mathrm{TR}$
$\Delta P Q R \equiv \Delta T S R$
In $\triangle P R U$ and $\triangle T R U$

1. $P R=T R$

Proven
2. $P \hat{R} U=T \hat{R} U=y$
given
3. UR is common
$\therefore \Delta \mathbf{P R U} \equiv \Delta$ TRU
SAS
$\therefore \mathrm{PU}=\mathrm{TU}$
$\Delta \mathbf{P R U} \equiv \Delta \mathbf{T R U}$

[26]

UNIT 19

FUNCTIONS AND RELATIONS PART 2

EXERCISE 19.1
1.1

$1.2 y=5 x-1$
2.1

$2.2 y=3(x+2)$
$2.3 \quad x=\frac{y}{3}-2$
$2.4(-3 ;-3)$

3.1	25			3.26							
3.3	Input	-3	-2	-1	0	1	2	3	5	10	19
	Output	-10	-5	0	5	10	15	20	30	55	95

3.4.1 $y=5(x+1)$
3.4.2 $x=\frac{y}{5}-1$
$4.1 \quad\{(-3 ; 3),(0 ; 0),(1 ;-1),(5 ;-5)\}$
$4.2 \quad\{-3 ; 0 ; 1 ; 5\}$
$4.3 y=-x$
5.1

6.

Figure number (\boldsymbol{n})	1	2	3	4
No. of matchsticks (\boldsymbol{m})	4	8	12	$\mathbf{1 6}$

7.1.2 The number of matchsticks is 4 times the figure number.

五
7.1.5 100 7.1.6 $\quad n=\frac{m}{4}$
7.2.1

Figure number (n)	1	2	3	4
No. of squares (s)	0	1	2	3

7.2.2 The number of squares is one fewer than the figure number.
7.2.3

7.2.4
$S=$
$s=n-$

Copyright © The Answer Series: Photocopying of this material is illegal

$(x+y)^{2}-x(x-y)$
$=x^{2}+2 x y+y^{2}-x^{2}+x y$
$=3 x y+y^{2}$
$2.4(3 x+2 y)^{2}-(3 x+2 y)(3 x-2 y)$
$=9 x^{2}+12 x y+4 y^{2}-\left(9 x^{2}-4 y^{2}\right)$
$=9 x^{2}+12 x y+4 y^{2}-9 x^{2}+4 y^{2}$
$=12 x y+8 y^{2}$
$2.5 \quad 3(x+1)(x+2)-(x-1)^{2}$
$=3\left(x^{2}+3 x+2\right)-\left(x^{2}-2 x+1\right)$
$=3 x^{2}+9 x+6-x^{2}+2 x-1$
$=2 x^{2}+11 x+5$
$2.6 \quad 2(x-3)(x+3)+5(x+2)^{2}$
$=2\left(x^{2}-9\right)+5\left(x^{2}+4 x+4\right)$
$=2 x^{2}-18+5 x^{2}+20 x+20$
$=7 x^{2}+20 x+2$
$2.7 \quad(x+1)(x+2)(x+3)$
$=\left(x^{2}+3 x+2\right)(x+3)$
$=x^{3}+3 x^{2}+2 x+3 x^{2}+9 x+6$
$=x^{3}+6 x^{2}+11 x+6$
$2.8(2 a-1)(3 a+2)(a-5)$
$=\left(6 a^{2}+a-2\right)(a-5)$
$=6 a^{3}+a^{2}-2 a-30 a^{2}-5 a+10$
$=6 a^{3}-29 a^{2}-7 a+10$
$2.9 \quad(2 x-y)^{2}-(x+2 y)^{2}$
$=4 x^{2}-4 x y+y^{2}-\left(x^{2}+4 x y+4 y^{2}\right)$
$=4 x^{2}-4 x y+y^{2}-x^{2}-4 x y-4 y^{2}$
$=3 x^{2}-8 x y-3 y^{2}$
$2.10 \quad 3(5 x-1)^{2}+(2 x+3)(2 x-3)$
$=3\left(25 x^{2}-10 x+1\right)+4 x^{2}-9$
$=75 x^{2}-30 x+3+4 x^{2}-9$
$=79 x^{2}-30 x-6$

EXERCISE 21.7

$1.1 \quad x^{2}+3 x+2$
$=(x+1)(x+2)$
$1.3 \quad x^{2}+5 x+4$
$=(x+1)(x+4)$
$1.5 \quad x^{2}+7 x+12$
$=(x+3)(x+4)$
$1.7 \quad x^{2}+4 x+4$
$=(x+2)(x+2)$
$=(x+2)^{2}$

$$
2.1 \begin{gathered}
x^{2}-3 x+2 \\
=(x-1)(x-2)
\end{gathered}
$$

$2.3 \quad x^{2}-5 x+4$
$=(x-1)(x-4)$
$2.5 \quad x^{2}-7 x+12$
$=(x-3)(x-4)$
$2.7 \quad x^{2}-4 x+4$
$=(x-2)(x-2)$
$=(x-2)^{2}$

$$
\begin{aligned}
1.2 & x^{2}+4 x+3 \\
= & (x+1)(x+3) \\
1.4 \quad & x^{2}+13 x+12 \\
= & (x+1)(x+12) \\
1.6 \quad & x^{2}+8 x+12 \\
= & (x+2)(x+6) \\
1.8 \quad & x^{2}+8 x+16 \\
= & (x+4)(x+4) \\
= & (x+4)^{2} \\
& \\
& x^{2}-4 x+3 \\
= & (x-1)(x-3) \\
2.4= & x^{2}-13 x+12 \\
= & (x-1)(x-12) \\
2.6= & x^{2}-8 x+12 \\
= & (x-2)(x-6) \\
2.8 & x^{2}-8 x+16 \\
= & (x-4)(x-4) \\
= & (x-4)^{2}
\end{aligned}
$$

EXERCISE 21.8

1. $x^{2}-x-2$
$=(x+1)(x-2)$
2. $x^{2}-2 x-3$
$=(x+1)(x-3)$
3. $x^{2}-3 x-4$
$=(x+1)(x-4)$
4. $x^{2}-4 x-5$
$=(x+1)(x-5)$
5. $x^{2}-5 x-6$

$$
=(x+1)(x-6)
$$

11. $x^{2}-x-6$

$$
=(x+2)(x-3)
$$

13. $x^{2}-11 x-12$

$$
=(x+1)(x-12)
$$

15. $x^{2}-x-12$
$=(x+3)(x-4)$
16. $x^{2}-4 x-12$
$=(x+2)(x-6)$
17. $x^{2}+4 x-5$
$=(x+5)(x-1)$
18. $x^{2}+5 x-6$
$=(x+6)(x-1)$
19. $x^{2}+x-6$
$=(x+3)(x-2)$
20. $x^{2}+11 x-12$
$=(x+12)(x-1)$
21. $x^{2}+x-12$
$=(x+4)(x-3)$
22. $x^{2}+4 x-12$
$=(x+6)(x-2)$

EXERCISE 21.9

1. $a^{2}-2 a-8$
$=(a+2)(a-4)$
2. $m^{2}-7 m-8$
$=(m+1)(m-8)$
3. $p^{2}+6 p+8$
$=(p+2)(p+4)$
4. $x^{2}+13 x+12$
$=(x+1)(x+12)$
5. $a^{2}+8 a+12$
$=(a+2)(a+6)$
6. $m^{2}-11 m+24$
$=(m-3)(m-8)$
7. $p^{2}-2 p-24$
$=(p+4)(p-6)$
8. $b^{2}+2 b-8$
$=(b+4)(b-2)$
$n^{2}+7 n-8$
$=(n+8)(n-1)$
9. $q^{2}-7 q+12$
$=(q-3)(q-4)$
10. $y^{2}-13 y+12$
$=(y-1)(y-12)$
11. $b^{2}-8 b+12$
$=(b-2)(b-6)$
12. $n^{2}+11 n+24$
$=(n+3)(n+8)$
13. $q^{2}+2 q-24$
$=(q+6)(q-4)$

UNIT 22

EQUATIONS PART 2

EXERCISE 22.1

$1.1 \quad 6 x-4=26$

$$
\therefore 6 x=30
$$

$$
\therefore x=5
$$

1.3

$$
3 x-2=x+6
$$

$$
\therefore 2 x=8
$$

$$
\therefore x=4
$$

$1.5 \quad \frac{x}{2}+\frac{1}{4}=\frac{3}{4}$
$\therefore \frac{x}{2}=\frac{1}{2}$
$\therefore x=1$
$1.7 \quad \frac{x+1}{12}+\frac{3 x-2}{4}=\frac{4 x-1}{3}$
$\therefore x+1+3(3 x-2)=4(4 x-1)$ $\therefore x+1+9 x-6=16 x-4$
$\therefore 10 x-5=16 x-4$
$-6 x=1$
$\therefore x=-\frac{1}{6}$
$1.94(x+1)=3(x+5)$
$\therefore 4 x+4=3 x+15$
$\therefore x=11$
$1.220-4 x=12$

$$
\therefore-4 x=-8
$$

$$
\therefore x=2
$$

$1.4 \quad 7 x+1=x+5$

$$
6 x=4
$$

$$
x=\frac{2}{3}
$$

$1.6 \quad \frac{2 x}{5}+10=12$

$$
\begin{aligned}
\therefore \frac{2 x}{5} & =2 \\
\therefore x & =2 \times \frac{5}{2} \\
& =5
\end{aligned}
$$

$1.8 \quad \frac{x}{4}+3=\frac{2-x}{3}$

$$
3 x+36=4(2-x)
$$

$$
3 x+36=8-4 x
$$

$\therefore 7 x=-28$
$\therefore x=-4$
$1.104(x+1)=5-2(x-3)$
. $4 x+4=5-2 x+6$
$\therefore 6 x=11-4$
$\therefore 6 x=7$
$\therefore x=\frac{7}{6}$
$2.14(x+3)-2=1-5(x-2)$
$4 x+12-2=1-5 x+10$
$\therefore 4 x+10=-5 x+11$
$9 x=1$
$\therefore x=\frac{1}{9}$
$2.37(x+1)-2=5(1-x)$
$\therefore 7 x+7-2=5-5 x$
$\therefore 7 x+5=5-5 x$
$12 x=0$
$\therefore x=0$
$2.52 x+3(x-2)=5(x+1)-2$
$2 x+3 x-6=5 x+5-2$

$$
5 x-6=5 x+3
$$

$$
\therefore 0 x=9
$$

No solution.

$$
\begin{aligned}
2.27(x+1)-2 & =5(x-3) \\
\therefore 7 x+7-2 & =5 x-15 \\
\therefore 7 x+5 & =5 x-15 \\
\therefore 2 x & =-20 \\
\therefore x & =-10
\end{aligned}
$$

$$
2.43(x+2)-1=3(x+1)+2
$$

$$
\therefore 3 x+6-1=3 x+3+2
$$

$$
\therefore 3 x+5=3 x+5
$$

$$
0 x=0
$$

$$
\therefore \boldsymbol{x} \in \mathbb{R}
$$

$$
2.6 \quad \frac{2}{x}+\frac{1}{4 x}=9, x \neq 0
$$

$$
4 x \times \frac{2}{x}+4 x \times \frac{1}{4 x}=4 x \times 9
$$

$$
\therefore 8+1=36 x
$$

$$
\therefore 36 x=9
$$

$$
\therefore x=\frac{1}{4}
$$

$2.7 \quad \frac{3}{x-2}-\frac{x}{x-2}=-4$

$$
\times(x-2):
$$

$$
\begin{aligned}
\therefore \frac{3-x}{x-2} & =\frac{-4(x-2)}{x-2} \quad, x \neq 2 \\
\therefore 3-x & =-4 x+8 \\
\therefore 3 x & =5 \\
\therefore x & =\frac{5}{3}
\end{aligned}
$$

$$
\frac{2}{x}+\frac{2}{x(x-2)}=\frac{1}{x-2}
$$

$$
\therefore \frac{2(x-2)+2}{x(x-2)}=\frac{x}{x(x-2)} \quad x \neq 0 ; x \neq 2
$$

$\times x(x-2):$

$$
2 x-4+2=x
$$

$\therefore x=2$ Not valid.
No Solution.
3. Vol of new object $=\mathbf{8} \times \mathrm{Vol}$ of original object
4. $k=5$
5. New volume $=10$ Old Volume
$(k x)^{3}=10 x^{3}$
$k^{3}=10$
$k=\sqrt[3]{10}$

$$
\approx 2,15
$$

6. New volume $=2$ Old Volume

$$
\begin{aligned}
\pi(k r)^{2} H & =2 \pi r^{2} \mathrm{H} \\
k^{2} & =2 \\
k & =\sqrt{2} \\
& \approx 1,41
\end{aligned}
$$

END-OF-UNIT 24 TEST 40 marks

QUESTION 1

1.1 .1	$6 \times 3,5^{2}$
$=73,5 \mathrm{~cm}^{2}$	
$1.2 \quad$ T.S.A. $=6 x^{2}$	$=1,5 \mathrm{~m}^{2}$
x^{2}	$=0,25$
x	$=0,5 \mathrm{~m}$
Vol $=\quad x^{3}$	$=0,53$
	$=0,125 \mathrm{~m}^{3}$

$$
\begin{array}{rl}
1.1 .2 & 3,5^{3} \\
= & 42,875 \mathrm{~cm}^{3}
\end{array}
$$

(2)(2)
1.3.1 $2 \times 20=40 \mathrm{~cm}^{3}$
1.3.2 $\mathbf{8} \times \mathbf{2 0}=\mathbf{1 6 0} \mathbf{c m}^{3} \quad(1)(1)$
[11]

QUESTION 2

QUESTION 3
Vol $=2^{2} \times 12-\pi(0,9)^{2} \times 12$
$=48-30,53628 \ldots$.
$=17,4637 \ldots$
$\approx 17 \mathrm{~m}^{3}$

QUESTION 4
$4.1 \quad 80 \%$ of $3=2,4 \mathrm{~m}$
4.3.1 $\mathrm{Vol}=\mathbf{1 , 2} \times \mathbf{0 , 5} \times \mathbf{1}$
$=0,6 \mathrm{~m}^{3}=0,6 \mathrm{kl}$ $=600 \mathrm{l}$

$$
\begin{array}{ll}
4.2 & \pi \times 1^{2} \times 2,4 \\
= & 7,5398 \ldots \mathrm{~m}^{3} \tag{2}\\
& \\
4.3 .2= & 600 \ell \div 7 \\
= & 85,71 \ell \text { per day }
\end{array}
$$

(3)(2)
4.3.3 $\quad \mathbf{7 , 5 3 9 8} \div \mathbf{0 , 6}$
$=12,566$
i.e. In $13^{\text {th }}$ week
(3)

