Mathematics Companion

WORKBOOK 2

Marilyn Buchanan, Andrew Lewis, et al.

Terms 3 \& 4

Grade 8 Maths Companion Workbook 2

TERM 3 \& 4

The Grade 8 Maths Companion Workbooks are comprehensive and creative in their coverage of the CAPS curriculum. They are a valuable tool for both the learner and the teacher. These workbooks help to ensure that all learners are brought up to a common standard, filling all gaps that may have opened in their mathematical content.

Key features:

- Arithmetical concepts move seamlessly into algebraic development
- Suitable as a class workbook and for self-study
- A full set of solutions complete the Companion set, making corrections simple and quick
- Worked examples, notes and exercises guide learners to a thorough understanding
- End-of-unit test assess progress consistently

THE
ANSWER
SERIES Your Key to Exam Success

GRADE
 CAPS

TERMS 3 \& 4

Also available

GRADE 8
MATHEMATICS 2-in-1

- questions in topics
- examination papers

Mathematics Companion

LEARNER'S WORKBOOK 2

Marilyn Buchanan, Andrew Lewis, et al.

THIS STUDY GUIDE INCLUDES
1 Exercises

2 End-of-unit tests

Book 2 covers Term 3 and 4

CONTENTS: TERM-BY-TERM

WORKBOOK 1

TERM 1

UNIT	TOPIC	WEEKS	PAGE
1.1	Arithmetic Part 1: Terms	1	1
1.2	Arithmetic Part 2: Factors \& Multiples	1	10
1.3	Arithmetic Part 3: Exponents	1	22
1.4	Arithmetic Part 4: Fractions	1	30
1.5	Arithmetic Part 5: Calculations	1	42
1.6	Arithmetic Part 6: Integers	1	48
2.2	Formal Algebra Part 1: The Basics	3	62
2.1	Number Patterns	$\mathbf{1 0}$ weeks	
			78

TERM 2

UNIT	TOPIC	WEEKS	PAGE
2.3	Formal Algebra Part 2: Equations	1	96
3.1	The Theorem of Pythagoras	1	110
3.2	Euclidean Geometry Part 1: Lines and Angles	2	122
3.3	Euclidean Geometry Part 2: Triangles	2	142
1.7	Ratio \& Rate	2	156
		$\mathbf{8}$ weeks	

WORKBOOK 2

TERM 3			
UNIT	TOPIC	WEEKS	PAGE
1.8	Financial Maths	1	174
3.4	Euclidean Geometry Part 3: Quadrilaterals	2	190
3.5	Euclidean Geometry Part 4: Constructions	1	201
3.6	The Cartesian Plane	1	215
3.7	Transformations Part 1: Translations \& Reflections	2	223
3.8	Transformations Part 2: Rotations	1	239
2.5	Formal Algebra Part 4: Graphs	1	247
5.2	Probability	1	262
			$\mathbf{1 0}$ weeks

TERM 4			
UNIT	TOPIC	WEEKS	PAGE
2.4	Formal Algebra Part 3: Exponents	3	276
4.1	Measurement Part 1: 2D - Length, Perimeter \& Area	2	303
4.2	Measurement Part 2: 3D - Volume \& TSA	1	333
5.1	Data Handling (Statistics)	2	357
		$\mathbf{8}$ weeks	

Hire Purchase Agreement

A hire purchase agreement is a contract between a buyer and a seller, where the buyer does not pay the full cost of an item before taking it out of the store. Instead of paying the full price, the buyer pays monthly instalments, which may be compared to hiring the item (i.e. paying a fee for using it, without actually owning it).

The buyer takes the item from the store and uses it before it is completely paid off, so the buyer is in debt to the seller. The seller charges interest, and allows the buyer to pay for the item over an extended period. Ultimately the buyer pays far more than the original cash price.

So the buyer purchases the item, but is really hiring it until it is paid for in full. Until the buyer completes payment, the item is really on loan from the seller.

Stop and multiply... before you buy!

Important terminology

S Simple interest
...is money you earn by lending money to another person. It is a fixed percentage of the loan and it is converted into a fixed amount added to each repayment.
\& An instalment
...is one part of your repayment. In general, a debt is divided into equal payments (i.e. instalments) to be paid back on a monthly basis.
\& Per annum (p.a.) ...is the Latin phrase meaning per year or over one year.

Example 2

A furniture store allows you to buy a lounge suite, with a cash price of R7200, on credit, as part of a hire purchase agreement. The hire purchase contract requires that you pay for the lounge suite on a monthly basis, over 12 months. Calculate the total cost to you, if you are charged simple interest at 25% for the year.

Solution:

Interest: 25% of R7 $200 \quad \mathrm{I}=\frac{25}{100} \times 7200$

$$
=1800 \quad \ldots \text { R7 } 200+\text { R1 } 800=\text { R9 } 000
$$

Over the course of the year you will pay R9 000 for the lounge suite.

Example 3

A micro-lender offers an instant cash loan of R5 000 and charges interest at a rate of 20% p.a. The loan agreement requires that the debt must be paid in monthly instalments, over 12 months. Determine the value of each monthly instalment.

Solution:

Interest: $I=\frac{20}{100} \times 5000$

$$
=1000 \quad \text {..R } 5000+\mathrm{R} 1000=\text { R6 } 000
$$

Total repayment: R6 000
Monthly instalments: $\frac{6000}{12}=$ R500 (per month)

Example 4

A furniture store allows you to buy, on credit, a television, marked with a cash price of R4500. The hire purchase contract requires you to pay for the TV over 24 months in equal monthly instalments. You are charged simple interest at 25% p.a. Calculate the value of each instalment.

Solution:

Interest for 1 year: $\quad I=\frac{25}{100} \times 4500 \quad=$ R1 125
Total interest: \quad Simple $I=$ R1 125 p.a. $\times 2$ years $\quad=$ R2 250
Total repayment: R4 $500+$ R2 $250=$ R6 750
Monthly instalments: $\quad \frac{6750}{24}=\mathrm{R} 281,25$
It is worth noting that an administration fee and/or an insurance fee may be added to your monthly instalment.

Example 1:

Determine the size of $A \hat{B} C$ in $A B C D$.

Solution

$$
\mathrm{ABC}+60^{\circ}+40^{\circ}+150^{\circ}=360^{\circ} \quad(\angle \prime \text { 's of quad. } \mathrm{ABCD})
$$

$$
\therefore \mathrm{ABC}+\underset{-250^{\circ}}{250^{\circ}}=\underset{-250^{\circ}}{360^{\circ}}
$$

If you make a statement based on a rule, mention

$$
\therefore \mathrm{A} \hat{\mathrm{~B}} \mathrm{C}=110^{\circ}
$$ the rule.

Example 2:

Determine the value of x.

Solution

$\mathrm{PSR}+50^{\circ}+45^{\circ}+160^{\circ}=360^{\circ}$
(\angle 's of quad. PQRS)
$\therefore \mathrm{PSR}+255^{\circ}=360^{\circ}$
$\therefore \mathrm{PSR}=105^{\circ}$
$\therefore x=75^{\circ}$
(adj. \angle 's on str. line RST)

Example 3

Determine the value of x.

Solution

$\mathrm{CDA}=105^{\circ}$
$\therefore x+2 x+150^{\circ}+105^{\circ}=360^{\circ}$
$\therefore 3 x+255^{\circ}=360^{\circ}$
$\therefore 3 x=105^{\circ}$
$\therefore x=35^{\circ}$

(adj. \angle 's on str. line CDE) (\angle 's of quad. ABCD)

EXERCISE 3.4.1

1. In each of the following diagrams, determine the value of x. Give reasons for all your statements. (Note that the diagrams are not necessarily drawn to scale.)
1.1

1.2

1.3

1.4

\qquad
\qquad
\qquad
\qquad
\qquad

QUESTION 1

The given diagram shows a Cartesian plane. Each block represents one square unit. Points A, B, C, D and E have been plotted in this Cartesian plane. The coordinates of A, B and C are given.

$$
A(2 ; 3)
$$

B ($0 ;-8$)
C $(-8 ; 5)$

1.1 Write down the coordinates of point D.
(......;)
(2)
1.2 Write down the coordinates of point E .
(......;)
(2)
1.3 In each of the following questions, circle the correct answer (A, B or C).
1.3.1 Which of the three points lies in quadrant 1 of the Cartesian plane?

A B C
1.3.2 Which of the three points lies in quadrant 2 of the Cartesian plane?

A B C
1.3.3 Which of the three points lies exactly eight units from the origin? \quad A \quad B $\quad \mathbf{C}$
1.3.4 Which of the three points has a negative x-coordinate?

A B C

QUESTION 3

In the given diagram, each of the triangles labelled B, C, D, E, F, G and H is an image of triangle A under a particular transformation.

In each of the spaces provided below, write the letter which refers to the correct triangle. Which triangle is the image of triangle A...
3.1 under translation left 6 units?
3.2 under translation down 12 units?
3.3 under translation right 7 units and down 1 unit?
3.4 under translation left 9 units and down 8 units?
3.5 under reflection in the y-axis?
3.6 under reflection in the x-axis?
$\mathrm{A} \rightarrow$. \qquad(1)
$\mathrm{A} \rightarrow$ (1)
$\mathrm{A} \rightarrow$ (1)
$\mathrm{A} \rightarrow$ (1)

$\mathrm{A} \rightarrow$
\qquad
$\mathrm{A} \rightarrow$ (1)

QUESTION 4

In the given diagram, each of the triangles labelled B and C is an image of triangle A under a particular transformation. In the spaces provided below, describe fully a transformation which maps triangle A on to the given image in each case. Use the correct terminology (e.g. translation, reflection or glide reflection).

4.1 $\mathrm{A} \rightarrow \mathrm{B} \quad$ Transformation:

[^0]
UNIT 2.5
 FORMAL ALGEBRA PART 4: GRAPHS

Unit 3.6 has an introduction to the Cartesian Plane, so should be done before this unit.

INTERPRETATION OF GLOBAL GRAPHS

Information is often displayed in the form of a graph, giving us a visual image. This makes it easy for us to analyse the data.

EXERCISE 2.5.1

1. Consider each of the following graphs, $\mathrm{A} B$ and C where two sets of data are taken for a few people.

1.1 In graph A , the heights and ages of three people, P, Q and R are represented.
1.1.2 Which person is the oldest? Circle one. $\mathrm{P} \quad \mathrm{Q} \quad \mathrm{R}$
1.2 In graph B , the masses (weights) and ages of three people, K , L and M are represented.
1.2.1 Which person is the lightest? Circle one. K L M
1.2.2 Which person is the youngest? Circle one. K L M
1.3 In graph C , the masses (weights) and heights of three people, X, Y and Z are represented.
1.3.1 Which two people are equal in height?
..... and
1.3.2 Which two people have equal masses?
..... and
2. Consider the following graphs, each of which shows the ages and masses of 3 groups of seven different people.

2.1 Which graph (A, B or C) suggests that the age of every person in the particular group was the same?

Circle one. A B C
2.2 Which graph (A, B or C) suggests that every person in the particular group was equal in mass?

A B C

QUESTION 1

Place each of the following events on the probability scale below. You need only write the letter of the event in the correct position on the scale.

	Example	$\mathbf{1 . 1}$	$\mathbf{1 . 2}$	$\mathbf{1 . 3}$	$\mathbf{1 . 4}$
Probability	75%	40%	0,05	0,5	$\frac{40}{200}$
Position	\mathbf{E}	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}

QUESTION 2

Complete the following table by choosing the description which BEST matches the probability value from the list of options on the right.

	Probability	Description		Description options
2.1	1			No chance
2.2	0			Unlikely
2.3	0,64			Definite
2.4	$\frac{3}{20}$			Equally likely as not 2.5 50%

A reminder...

When you divide a divisor

into two or more UNLIKE terms in a bracket, the divisor must be divided into each term.

5. Simplify each of the following expressions as far as possible. If a particular expression cannot be simplified, write cannot be simplified. In each case assume that every variable is nonzero.
$5.1 \quad \frac{2 a b+a}{a}$
$=$ \qquad
$=$ \qquad
$5.3 \quad \frac{x^{7}+x^{3}}{x^{3}}$ $=$ \qquad $=$ \qquad

$5.6 \quad \frac{m^{6}+m^{6}}{m^{3} \times m^{3}}$
$=$ \qquad
$=$ \qquad
$5.8 \quad \frac{2 n^{6}+2 n^{6}}{-2 n^{3} \times 2 n^{3}}$
$=$ \qquad
$=$. \qquad
$5.10 \quad \frac{12 p^{6}+12 p^{8}}{2 p^{3}+2 p^{3}}$
$=$. \qquad
$=$ \qquad

4 QUESTION 2

Consider a hamster wheel, with a radius of 113 mm .
2.1 Determine the length of the diameter and the circumference of this wheel.

2.2 Determine the distance "covered" by the hamster if the wheel completes 50 rotations.
\qquad
\qquad

QUESTION 3

Calculate the shaded area for each of the following figures:
3.1

$$
3.2
$$

Area EFGI = \qquad
3.3

Area JKLM $=$ \qquad

QUESTION 4

In the diagram shown alongside, O is the centre of the circle.

Points A, B and C lie on the circumference of the circle.
$\Delta \mathrm{ABC}$ is a right-angled triangle, with $\hat{\mathrm{B}}=90^{\circ}$,
 $\mathrm{AB}=42$ units and area 840 units 2.

Calculate:
4.1 The length of BC.
\qquad
\qquad
\qquad
4.2 The length of AC.
\qquad
\qquad
\qquad
\qquad

Sample Size

The total number of values in a set of data is referred to as the sample size. Often, when data is collected, it is impossible to collect the data for the entire population of interest, so data collectors select a representative sample of the population.

We generally use the letter \boldsymbol{n} to represent sample size.

Example 1

Consider the following set of data. The values have been ranked.

$$
\begin{array}{lllllll}
16 & 25 & 36 & 49 & 64 & 81 & 100
\end{array}
$$

This data set consists of seven values, so for this set of data, $n=7$.
For this set of data, the range is calculated as follows.

$$
\begin{aligned}
\text { Range } & =x_{\max }-x_{\min } \\
& =x_{7}-x_{1} \\
& =100-16 \\
& =84
\end{aligned}
$$

Measures of Central Tendency

The measures of central tendency are three "averages", which provide us with a value that is, in some way, "typical" of the set of data.

Three averages: mean median mode

In conversation, when a person speaks of the average, they are generally referring to the mean of a set of data. From now on, you need to be specific when you refer to the average for a set of data. In other words, rather than speaking of the average, you must choose the word mean or median or mode (whichever is correct).

Mean

(symbol: \bar{x})

Median

Mode

This is the sum of all the values divided by the number of values.

If the sample size is odd (n is odd), it is the middle value in the ranked data.
If the sample size is even (n is even), it is half the sum of the two middle values.

This is the value appearing most frequently in the set of data (i.e. the most common value in the data set). There may be more than one mode for a set of data. A set of data with two modes is described as "bimodal".

The Three Averages

Mean
$\bar{x}=\frac{\text { sum of values }}{\text { number of values }}$

Example 1

Consider the following set of data. The values have been arranged in ascending order.

$$
\begin{array}{lllllll}
11 & 12 & 13 & 14 & 15 & 15 & 18
\end{array}
$$

For this set of data, the mean, median and mode are as follows.
Mean: $\quad \bar{x}=\frac{11+12+13+14+15+15+18}{7}=\frac{98}{7}=14$
Median: 14 Given that $n=7, x_{4}$ is the middle value.
Mode: $\quad 15 \quad$ There is a single mode, which occurs twice.

[^0]: 4.2 $\mathrm{A} \rightarrow \mathrm{C} \quad$ Transformation:

