Mathematics IEB

PAPERS \& ANSWERS

ieb

Marilyn Buchanan, et al.

P \& A

Grade 11 Mathematics IEB Papers \& Answers

The Grade 11 Maths Papers \& Answers were compiled and designed by an expert team of maths educators for learners aspiring to excellence. They are for in-depth exam revision and are intended to extend mathematical thinking and expertise beyond the norm.

It features practice exams and full answers, allowing learners to practice under timed exam conditions as well as highlight which areas of the syllabus require more attention.

This comprehensive study guide contains:

- 10 paper 1 exam papers with detailed memos
- 10 paper 2 exam papers with detailed memos
- An abundance of higher order questions

Using these Grade 11 Maths Papers and Answers will rapidly accelerate and hone your skills and enable you to excel in either CAPS or IEB exams.

THE
ANSWER
SERIES Your Key to Exam Success

GRADE

11

CAPS

P \& A

Also available

GRADE 11
MATHEMATICS
3-IN-1

- Comprehensive notes
- Exercises
- Full solutions

Mathematics

Papers \& Answers

Marilyn Buchanan, et al.

THIS STUDY GUIDE INCLUDES

1 Exam Papers
(questions set mainly by IEB examiners)
2 Memoranda

PUBLICATIONS \& ACKNOWLEDGEMENTS

OUR CAPS RANGE FOR GRADE 8 \& 9 LEARNERS

- Mathematics
- Economic \& Management Sciences

OUR CAPS RANGE FOR GRADE 10 LEARNERS

- Mathematics
- Mathematical Literacy
- Accounting
- Physical Sciences
- Life Sciences
- Economics
- Consumer Studies
- English Home Language
- English 1st Additional Language

OUR CAPS RANGE FOR GRADE 11 LEARNERS

- Mathematics
- Mathematical Literacy
- Accounting
- Physical Sciences
- Life Sciences
- Business Studies
- English 1st Additional Language

OUR CAPS RANGE FOR GRADE 12 LEARNERS

- Mathematics
- Mathematical Literacy
- Physical Sciences
- Life Sciences
- Accounting
- Consumer Studies
- Business Studia
- Economics
- English Home Language
- English 1st Additional Language
- Afrikaans 1ste Addisionele Taal

OUR IEB RANGE INCLUDES

- Gr 10, 11 \& 12 Life Sciences - Gr 11 \& Gr 12 Maths Papers \& Answers
- Gr 10-12 Advanced Programme Mathematics (New 2016 Curriculum)

The Answer Series would like to acknowledge the huge contribution made by Bonita Morgan and Judy Crowster, who typeset the material in this book with the utmost dedication and expertise.

COPYRIGHT

THE WHOLE OR ANY PART OF THIS PUBLICATION MAY NOT BE REPRODUCED OR TRANSMITTED BY ANY MEANS WITHOUT WRITTEN PERMISSION FROM THE PUBLISHER. THIS INCLUDES ELECTRONIC OR MECHANICAL, INCLUDING PHOTOCOPYING, RECORDING, OR ANY INFORMATION STORAGE AND RETRIEVAL SYSTEM.

The Answer Series the publishers

CONTENTS

Paper 1's		
Papers	Page no's Questions	Page no's Answers
1A	1.1	M 1.1
1B	1.2	M 1.3
1C	1.4	M 1.5
1D	1.6	M 1.7
1E	1.7	M 1.9
$\mathbf{1 F}$	1.9	M 1.11
$\mathbf{1 G}$	1.11	M 1.12
$\mathbf{1 H}$	1.13	M 1.14
$\mathbf{1 I}$	1.15	M 1.16
$\mathbf{1 J}$	1.17	M 1.18

Trigonometry Summary

Calculator Instructions
DoBE/IEB Exam Information Sheet

Paper 2's		
Papers	Page no's Questions	Page no's Answers
2A	2.1	M 2.1
2B	2.4	M 2.3
2C	2.7	M 2.5
2D	2.10	M 2.8
2E	2.12	M 2.10
2F	2.16	M 2.13
2G	2.18	M 2.15
2H	2.20	M 2.17
2I	2.22	M 2.19
2J	2.25	M 2.21

End of book
 Note:

 End of book End of bookThe information sheet is only provided for the Gr 12 exam.

ABOUT THIS BOOK

The examination papers compiled in this book are an attempt by The Answer Series to provide teachers and learners with practice material in preparation for the end-of-year examinations. They are an interpretation of the CAPS curriculum and should not be taken to indicate the only type of questions that could be asked, but rather as possible examples.
There are 10 paper 1 's and 10 paper 2's. The first 5 of each are newly compiled, while the second 5 have been compiled by adapting the papers from the previous edition of this book. All 20 papers have been set according to the requirements of the CAPS curriculum. The allocation of marks to topics has occasionally been influenced by the need to provide more practice where deemed necessary.
All 10 paper 1 's have been compiled by Marilyn Buchanan (current IEB examiner) - the first 5 created; the second 5 adapted. The 5 new paper 2's have been compiled by Praveshen lyer (future IEB examiner) and a team of senior teachers from leading schools. The second 5 paper 2's have been adapted by Anne Eadie, coordinator of this project. We are indebted to Janet Aird and Gail Hallet who made a valuable contribution by checking sections of this book.
We trust that experiencing this comprehensive compendium of questions and answers will place learners in a strong position to succeed in the CAPS examinations.
We will welcome constructive comments from both teachers and learners.

Marilyn Buchanan: mabkib@telkomsa.net Anne Eadie: anne@theanswerseries.co.za

EXAM PAPER 1 D

Approved non-programmable and non-graphical calculators may be used, unless otherwise stated.
Round off your answers to ONE decimal digit where necessary, unless otherwise stated.

SECTION A

QUESTION 1

1.1 Write down the first four terms of the following sequences: 1.1.1 $T_{n}=\frac{24}{n} \quad$ 1.1.2 $\quad T_{n}=5^{n}+2$
(1)(1)
1.2 Simplify:
1.2.1 $\sqrt[4]{\frac{16 x^{12}}{y^{8}}} \quad 1.2 .2 \frac{a+b}{a^{-1}+b^{-1}}$
(3)(4)
1.3 Solve for x :
1.3.1 $2 x(4 x-1)=15$
1.3.2 $x^{\frac{3}{4}}=27$
1.3.3 $\sqrt{10-3 x}=x-2$
1.3.4 $\frac{8}{x^{2}-4}+\frac{x}{2-x}+\frac{1}{x+2}=0$
1.3.5 $\mathrm{p} x^{2}-6 x=\mathrm{q}$ by completing the square.
1.4 Given: $2 x^{2}+m x+18=0$

Determine the values of m so that the equation has real roots.

QUESTION 2

2.1 Given the quadratic sequence: $59 ; 48 ; 39 ; 32 \ldots$ Determine:
2.1.1 the constant second difference.
2.1.2 a formula for the $\mathrm{n}^{\text {th }}$ term of the sequence.
2.2 Given: $1 ; 3 ; 5 ; 7 ; 9 ; 1 ; 3 ; 5 ; 7 ; 9 ; 1 ; 3 \ldots$

Determine the value of T_{2014}.

QUESTION 3

3.1 On her $18^{\text {th }}$ birthday,

Emma received a new car valued at R265 000.

Cars depreciate in value by 20% per year.
Determine the value of Emma's car on her

$$
\begin{equation*}
21^{\text {st }} \text { birthday. } \tag{2}
\end{equation*}
$$

3.2 Nomfundo has a bank account earning interest at $8,5 \%$ p.a. compounded monthly.
On her $16^{\text {th }}$ birthday she already has R8 500 in the account and
 decides to invest all her birthday gift money into the account as she hopes to have R20 000 available on her $21^{\text {st }}$ birthday.

Assuming no further deposits are made into the account, calculate how much money Nomfundo will need to receive on her $16^{\text {th }}$ birthday.
[7 marks]

QUESTION 4

4.1 Determine the probability that a point selected at random within the large semi-circle will also be within one of the equal sized small semi-circles.

4.2 The probability that at $10 \mathrm{a} . \mathrm{m}$. Shelby will go to the gym is 0,35 and the probability that she will go to a coffee shop is 0,16 .
Determine the probability that she will neither go to gym nor go to a coffee shop.
[8 marks]

QUESTION 5

The number of mosquitoes in a certain region in Africa depends on the rainfall in January of a given year.
The function $\mathrm{N}(x)=250 x-x^{2}$ gives an approximate number, $\mathrm{N}(x)$, of thousands of mosquitoes when the rainfall is $x \mathrm{~mm}$ in January.
5.1 Calculate the predicted number of mosquitoes after a January rainfall of 20 mm .
5.2 Determine how much rain will cause 15 million mosquitoes.
5.3 Determine the maximum number of mosquitoes that can be predicted using this model.
(5)

[12 marks]

SECTION B

QUESTION 6

Refer to the figure showing a straight line passing through
$\mathrm{A}(-3 ;-4)$ and $\mathrm{B}(2 ; 1)$, and a parabola of the form
$\mathrm{f}(x)=\mathrm{ax}+\mathrm{b} x-5$, passing through $\mathrm{C}(-1 ;-6)$ and $D(3 ; 22)$.
 $\mathrm{y}=\mathrm{g}(x)$ passing through A and B .
6.2 Showing all working, prove that $\mathrm{a}=2$ and $\mathrm{b}=3$.
6.3 Calculate the length of EF.
6.4 Calculate the length of IH .
6.5 Determine the coordinates of G.
6.6 Calculate the length of KJ , where J is the turning point of the parabola.
[29 marks]

QUESTION 7

7.1 Refer to the Venn diagram below showing information about a sample space S and two events R and Q.

It is given that $n(R$ or $Q)=68$.
Determine:
7.1.1 the value of x.
7.1.2 $\mathrm{n}(\mathrm{S})$.
(3)(1)
7.1.3 The probability of an item chosen at random:
(i) not being in R nor Q .
(ii) being in R but not Q .
(2)
7.2 The probability of Isabella passing a driving test on the first appointment is $\frac{3}{7}$.
For each subsequent attempt after failing,

the probability of her passing the test is $\frac{3}{5}$.
Determine the probability of Isabella passing the test in:
7.2.1 2 attempts 7.2.2 3 attempts
(2)(2)
7.2.3 4 or more attempts

QUESTION 8

A doctor must decide on which antibiotic to prescribe for Pontsho.

Antibiotic A causes bacteria to decrease at a rate of 3% every 15 minutes.
For antibiotic B, the bacteria decreases at 2,5\% every 10 minutes.
Taking t as the number of hours since Pontsho's first dose of medicine, and P_{0} as the initial mass of bacteria:
8.1 Set up formulae to indicate the amount of bacteria in Pontsho's body t hours after the first dose of each antibiotic.
8.2 On the same set of axes, draw graphs showing the effect of each antibiotic over a 24 hour period, using $P_{0}=1000$.
8.3 Calculate the difference in mass of the bacteria after 12 hours.
[10 marks]

QUESTION 9

9.1 Given $2 x-4 ; 2 x+1 ; 3 x-5$ as the first three terms of a linear sequence.
9.1. Determine the value of x.
9.1.2 Hence calculate the constant difference.
9.2.1 Solve for $p: \quad 3-\frac{9}{p^{2}}=\frac{26}{p}$
9.2.2 Hence solve for $x: 3^{0}-3^{2-2 x}+2=\frac{26}{3^{x}}$
9.3.1 Rationalise the denominator in the expression $\frac{1}{\sqrt{n}+\sqrt{n+1}}$ where n is a natural number.
9.3.2 Using your result in part 9.3.1, evaluate WITHOUT USING A CALCULATOR:

$$
\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\ldots+\frac{1}{\sqrt{99}+\sqrt{100}}
$$

[22 marks]

Decimal digits

The instruction in IEB exams is for answers to be rounded off to ONE decimal digit where necessary, unless otherwise stated, whereas National exams require TWO digits.

EXAM PAPER 1E

Approved non-programmable and non-graphical calculators may be used, unless otherwise stated.
Round off your answers to ONE decimal digit where necessary, unless otherwise stated.

SECTION A

QUESTION 1

1.1 Simplify:
1.1.1 $\frac{\sqrt{9 x^{3}}+\sqrt{x^{5}}-\sqrt{16 x^{3}}}{\sqrt{x}}$
1.1.2 $\frac{1^{a b}}{a^{-1}+b^{-1}}$
1.2 Solve for x :
1.2.1 $x^{2}+8 x=0$

1.2.2 $\sqrt{x+5}-x-3=0$
1.2.3 $9^{27 x} \times 27^{9 x}=729$
1.3 The equation $x^{2}+(2 p-5) x+p^{2}=0$
needs to have real roots.
1.3.1 Use the discriminant to determine the values of p.
1.3.2 Given that p is an integer, determine the greatest possible value of p.
1.3.3 Using the integer value of p from above, solve the equation.
[30 marks]

QUESTION 2

2.1 Given: $T_{n}=2 n \quad$ if n is odd
\& $T_{n}=n+1$ if n is even
Write down the first six terms of this sequence

EXAM PAPER 2G

2
Approved non-programmable and non-graphical calculators may be used, unless otherwise stated.
Round off your answers to ONE decimal digit where necessary, unless otherwise stated.

QUESTION 1

1.1 The bar chart below shows the distribution of the marks obtained by a class in a particular test question.

1.1.1 Calculate the mean mark.
1.1.2 Complete the table below.

x_{i}	f_{i}	$x_{\mathrm{i}}-\bar{x}$	$\left(x_{\mathrm{i}}-\bar{x}\right)^{2}$	$f_{\mathrm{i}} \times\left(x_{\mathrm{i}}-\bar{x}\right)^{2}$
1				
2				
3				
4				
5				
$\Sigma:$				
			Σ	

1.1.3 Calculate the variance and standard deviation for the distribution of marks.
(3)

Decimal digits

The instruction in IEB exams is for answers to be rounded off to ONE decimal digit where necessary, unless otherwise stated, whereas National exams require TWO digits.
1.2 A consumer testing company studied three brands of washing machines to see how much water was used during each wash.

Each washing machine was tested 25 times.

The box and whisker plots below show the results of this study.

Washing machine A

Washing machine B

Washing machine C

Number of litres used by washing machine

1.2.1 Which brand machine (A, B or C) frequently uses the most water?
1.2.2 Explain why the mode is not a good measure of central tendency in this situation. (1)
1.2.3 Which brand machine (A, B or C) is the most predictable?
1.2.4 Explain how you can tell from a box and whisker diagram whether the range will be a good measure of dispersion or not.
1.2.5 If the interquartile range for the machine A data is 57 litres and the median is 161 litres, estimate the lower quartile litres used and the upper quartile litres used.
1.2.6 In one of the sets of data above the outlier results have not been ignored. State which set (A, B or C), giving reasons.

QUESTION 2

2.1 The diagram shows triangle $A B C$ with vertices A(-2; 8),
$B(4 ; 4)$ and $C(1 ;-6)$
Determine:
2.1.1 the length of $A B$
2.1.2 the midpoint of $B C$

C(1;-6)
2.1.3 the gradient of $A C$
2.1.4 the angle of inclination of $A C$
2.1.5 the size of ACB
2.2 Given the points $A(1 ; 3)$ and $B(0 ; 2)$.

Find the equation of the straight line through B and perpendicular to $A B$.
2.3 The equation of a line is given by $y-a=2(x-b)$.

Determine:
2.3.1 the gradient of the line
2.3.2 a pair of possible values of a and b if the line passes through C(1;-6)
2.4 In the diagram alongside, straight lines TW and PW intersect at W .
The equation of TW is $y=2 x+5$.
Point W lies on the y-axis.

Point P lies on the x-axis.
2.4.1 Give the coordinates of W .
2.4.2 If TW $\perp \mathrm{WP}$, determine the equation of straight line, WP.
2.4.3 Determine the coordinates of P.
2.4.4 Calculate the area of $\triangle \mathrm{WOP}$.

QUESTION 3

3.1 In the diagram, $\mathrm{P}(12 ;-9)$ is a point on OP.
3.1.1 Determine, without a calculator, the value of $\sin \theta$.
(3)

3.1.2 Use a calculator to determine the size of θ. (2) 3.1.3 If $R(4 ; a)$ is a point on $O P$, find the value of a. (1)
3.2.1 Simplify $\frac{\sin A \cdot \cos A \cdot \tan A}{1-\cos ^{2} A}$
3.2.2 Hence solve the equation for $\theta \in\left[0^{\circ} ; 360^{\circ}\right]$ if

$$
\begin{equation*}
\tan \theta=\frac{\sin A \cdot \cos A \cdot \tan A}{1-\cos ^{2} A} \tag{3}
\end{equation*}
$$

3.3 If $\sin x=\mathrm{a}$, express the following in terms of a:
3.3.1 $\sin \left(180^{\circ}-x\right) \quad$ 3.3.2 $\sin \left(180^{\circ}+x\right)$
3.3.3 $\sin (-x)$
3.4 Evaluate without using a calculator:
$\tan 300^{\circ}+\cos \left(90^{\circ}+x\right)$
3.5 Determine the general solution to
$1-\cos \theta=\cos 44^{\circ}$
3.6 In the diagram alongside, quadrilateral $A B C D$ with diagonals $A C$ and $B D$ is such that
$A D=4 \mathrm{~mm}, A C=7 \mathrm{~mm}$, $\hat{\mathrm{A}}_{2}=60^{\circ}, \hat{\mathrm{B}}_{2}=70^{\circ}$ and $\hat{\mathrm{D}}_{2}=50^{\circ}$.

Determine:
3.6.1 the length of $D C$
3.6.2 the length of $B C$
3.6.3 the area of $\triangle \mathrm{BCD}$

[34 marks]

QUESTION 4

4.1 In the diagram, $\mathrm{QR}=168$ units, $\mathrm{QP}=21$ units, $\hat{\mathrm{P}}=57^{\circ}$ and $\mathrm{PR}=x$ units. E is a point on QF produced so that $Q E=k(F E)$ with F a point on

4.1.1 Show that $x^{2}-22,9 x-27783=0$
4.1.2 Show that $x=179$ units, rounded off to the nearest whole number.
4.1.3 If it is further given that $R \hat{F} E=12,8^{\circ}$, find the value of k
4.2.1 Determine the value(s) of $\theta \in\left[0^{\circ} ; 90^{\circ}\right]$ for which $\frac{\sin ^{m} \theta-\cos ^{m} \theta}{\tan ^{m} \theta-1}$ is undefined for all real values of m.
4.2.2 Show that $\frac{\sin ^{m} \theta-\cos ^{m} \theta}{\tan ^{m} \theta-1}=\cos ^{m} \theta$
4.2.3 Hence simplify as far as possible

$$
\begin{align*}
& \frac{\sin \theta-\cos \theta}{\tan \theta-1} \times \frac{\tan ^{2} \theta-1}{\sin ^{2} \theta-\cos ^{2} \theta} \times \frac{\sin ^{3} \theta-\cos ^{3} \theta}{\tan ^{3} \theta-1} \times \\
& \frac{\tan ^{4} \theta-1}{\sin ^{4} \theta-\cos ^{4} \theta} \times \ldots \times \frac{\sin ^{2007} \theta-\cos ^{2007} \theta}{\tan ^{2007} \theta-1} \tag{2}
\end{align*}
$$

[17 marks]

Paper 2 THEORY

Grade 11 (and 12) Paper 2 could require proofs of theorems and/or trigonometric formulae up to a maximum of 12 marks.

QUESTION 5

5.1 Refer to the diagram.

Circle with centre O is given.
$P Q$ is a tangent to the circle at B.
$\hat{\mathrm{C}}_{1}=30^{\circ}$.
Calculate

the size of the following angles:
$\begin{array}{ll}\text { 5.1.1 } & \hat{\mathrm{O}}_{3} \\ \text { 5.1.2 } & \hat{\mathrm{A}}_{1} \\ \text { 5.1.3 } & \hat{\mathrm{P}}\end{array}$
(2)
(2)
(4)

5.2 Refer to the diagram In circle with centre O ,
$\hat{\mathrm{E}}_{1}=90^{\circ}=\hat{\mathrm{O}}_{2}$.
$\hat{\mathrm{O}}_{1}+\hat{\mathrm{O}}_{2}=120^{\circ}$.
Calculate the size of:
5.2.1 \hat{C}
5.2.2 $\hat{\mathrm{B}}_{1}+\hat{\mathrm{B}}_{2}$
(3)

[16 marks]

QUESTION 6

Refer to the figure.
O is the centre of the circle.
$P Q \| R S$ and $\hat{P}=y$
6.1 Determine the following angles in terms of y :
6.1.1 $\hat{\mathrm{O}}_{1}$
6.1.2 T_{2}
(2)
(5)

6.2 From your results in 6.1, what conclusion(s) can you draw about quad QROT?

Motivate your answer.

MEMO PAPER 1D

1．1．1 $24 ; 12 ; 8 ; 6<$
1．1．2 7 ： 27 ；127： $627<$
1．2．1
1．2．2 $\frac{a+b}{a^{-1}+b^{-1}}$
$=(a+b) \div\left(\frac{1}{a}+\frac{1}{b}\right)$
$=(a+b) \div \frac{b+a}{a b}$
$=(a+b) \times \frac{a b}{a+b}$
$=a b<$
1．3．1 $2 x(4 x-1)=$
$\therefore 8 x^{2}-2 x-15=0$
$(4 x+5)(2 x-3)=0$
$x=-\frac{5}{4}$ or $x=\frac{3}{2}<$
1．3．2 $\begin{aligned} x^{\frac{3}{4}} & =27 \\ \therefore\left(x^{\frac{3}{4}}\right)^{\frac{4}{3}} & =\left(3^{3}\right)^{\frac{4}{3}}\end{aligned}$
$\therefore x=3^{4}$
$=81<$
1．3．3

$$
\sqrt{10-3 x}=x-2
$$

$10-3 x=x^{2}-4 x+4$
$x^{2}-x-6=0$
$(x-3)(x+2)=0$
$x=3$ or $x=-2$
Check $x=3: \quad$ LHS $=1=$ RHS

Check $x=-2$ ：LHS $=4 ;$ RHS $=-4$

$$
x=-2 \text { is not valid }
$$

1．3．4

$$
\begin{aligned}
\frac{8}{x^{2}-4}+\frac{x}{2-x}+\frac{1}{x+2} & =0 \\
\frac{8}{(x+2)(x-2)}-\frac{x}{x-2}+\frac{1}{x+2} & =0 \quad x \neq \pm 2 \\
\therefore 8-x(x+2)+x-2 & =0 \\
\therefore 8-x^{2}-2 x+x-2 & =0 \\
\therefore-x^{2}-x+6 & =0 \\
\therefore x^{2}+x-6 & =0 \\
\therefore(x+3)(x-2) & =0 \\
\therefore x=-3 \text { or } x=2 &
\end{aligned}
$$

But $x \neq 2$ ．．．see restrictions in line 2
Only $x=-3<$

$\begin{aligned} & 3.1 \quad 265000(1-0,2)^{3}=\mathrm{R} 135680< \\ & 3.2(8500+x)\left(1+\frac{0,085}{12}\right)^{60}=20000 \\ & \therefore 8500+x=\frac{20000}{1,5273 \ldots} \\ &=13094,99913 \\ & \therefore x=4594,99913 \\ &=\text { R4 } 595<\end{aligned}$
4．1 Area of 2 semi－circles $=\pi r^{2}$
Area of big semi－circle $=\frac{1}{2} \times \pi(2 r)^{2}=2 \pi r^{2}$

$$
\text { Probability }=\frac{1}{2}<
$$

4．2 $P($ Gym or Coffee $)=0,35+0,16=0,51$

$P($ neither $)=0,49<$

5．1 $N(20)=250 \times 20-20^{2}=4600$ thousand $<$
$5.2 \quad 250 x-x^{2}=15 \times 10^{6}$
$=15 \times 10^{3}$ thousand

$$
x^{2}-250 x+15000=0
$$

$\therefore(x-100)(x-150)=0$
．$x=100$ or $x=150$
i．e． $100 \mathrm{~mm}<$ or $150 \mathrm{~mm}<$
5．3 $N(x)=-x^{2}+250 x$
$x_{\mathrm{TP}}=\frac{-250}{2(-1)}$
$=125$
$y_{\text {TP }}=-125^{2}+250 \times 125$

$=15625$ thousand
$=15625000<$
$6.1 \quad m_{A B}=\frac{1-(-4)}{2-(-3)}=\frac{5}{5}=1$
Eqn．：$y-1=1(x-2)$

$$
\therefore y=x-1<
$$

1

$f(x)=a x^{2}+b x-5$
C: $\quad-6=a(-1)^{2}+b(-1)-5$
$\begin{aligned} \therefore-6 & =a-b-5 \\ \therefore b & =a+1 \quad \ldots \text { (1) }\end{aligned}$
D: $\quad 22=a \times 3^{2}+b \times 3-5$
$27=9 a+3 b$
$9=3 a+b \quad \ldots$ (2)
$9=3 a+a+1$
$\therefore 8=4 a$

$a=2$ and $b=3<$
6.3

$$
\begin{aligned}
& E F=y_{E}-y_{F} \\
&=-1-(-5) \\
&=4 \text { units < } \text { 6.4 \& } H \text { are } x \text {-ints. of } \mathrm{f}: \\
& \therefore 2 x^{2}+3 x-5=0 \\
& \therefore(2 x+5)(x-1)=0 \\
& \therefore x=-\frac{5}{2} \quad \text { or } x=1 \\
& \therefore I H=\frac{7}{2} \text { units }<
\end{aligned}
$$

6.5 At G: $\mathrm{f}(x)=\mathrm{g}(x) \quad 6.6 \quad x_{\mathrm{J}}=-\frac{3}{4}$ $2 x^{2}+3 x-5=x-1$ $2 x^{2}+2 x-4=0$ $x^{2}+x-2=0$ $(x+2)(x-1)=0$

$$
x=-2 \text { or } x=1
$$

$x_{G}=-2$
\& $y_{G}=-2-1$
$=-3$
i.e. $G(-2 ;-3)<$

$$
\begin{aligned}
\therefore y_{J} & =2\left(-\frac{3}{4}\right)^{2}+3\left(-\frac{3}{4}\right)-5 \\
& =-\frac{49}{8} \\
\& y_{K} & =-\frac{3}{4}-1 \\
& =-\frac{7}{4} \\
\therefore K J & =-\frac{7}{4}+\frac{49}{8} \\
& =\frac{35}{8} \text { units }<
\end{aligned}
$$

8.3 The difference in the mass of bacteria
$=f(12)-g(12)$
$=1000(1-0,03)^{48}-1000(1-0,025)^{72}$
$=70,2<$
$=231,762-161,555$
Confirm that this answer is feasible by referring to \mathbf{A} and \mathbf{B} on the graph in 8.2 as the values of $f(t)$ and $g(t)$ for $t=12$.
Note: A-B $\simeq 250-180 \simeq 70$
9.1.1 For a linear sequence, the first differences are equal.

$$
T_{2}-T_{1}=T_{3}-T_{2}
$$

$$
(2 x+1)-(2 x-4)=(3 x-5)-(2 x+1)
$$

$$
\begin{aligned}
2 x+1-2 x+4 & =3 x-5-2 x-1 \\
\therefore 5 & =x-6 \\
\therefore x & =11<
\end{aligned}
$$

9.1.2 Seq.: 18 ; 23 ; 28 $d=5<$

$$
\begin{aligned}
& \text { 7.1.1 } n(R \text { or } Q)=68 \quad \text { 7.1.2 } n(S) \\
& 40+35-x=68 \\
& \begin{aligned}
\text { 7.1.2 } & n(S) \\
= & 68+12
\end{aligned} \\
& =80 \ll \\
& 7.1 .3 \text { (i) } \frac{12}{80}=\frac{3}{20}< \\
& \text { (ii) } \frac{33}{80}< \\
& \text { 7.2.1 } \quad \frac{4}{7} \times \frac{3}{5}=\frac{12}{35}< \\
& \text { 7.2.2 } \frac{4}{7} \times \frac{2}{5} \times \frac{3}{5}=\frac{24}{175}< \\
& \text { 7.2.3 } 1-\left(\frac{3}{7}+\frac{12}{35}+\frac{24}{175}\right)=\frac{16}{175}<\ldots 1-[P(1)+P(2)+P(3)]
\end{aligned}
$$

9.2.1
$3-\frac{9}{p^{2}}=\frac{26}{p}$

$$
\begin{aligned}
\left.\times p^{2}\right) \quad \therefore 3 p^{2}-9 & =26 p \\
\therefore 3 p^{2}-26 p-9 & =0
\end{aligned}
$$

$$
(3 p+1)(p-9)=0
$$

$$
p=-\frac{1}{3} \quad \text { or } p=9<
$$

9.2.2 $\quad 3^{0}-3^{2-2 x}+2=\frac{26}{3^{x}}$

$$
\begin{aligned}
\therefore 1-\frac{3^{2}}{3^{2 x}}+2 & =\frac{26}{3^{x}} \\
\therefore 3-\frac{9}{3^{2 x}} & =\frac{26}{3^{x}}
\end{aligned}
$$

$$
\begin{aligned}
& p=3^{x} \\
& 3^{x}=-\frac{1}{3} \quad \text { or } \quad 3^{x} \\
&=9 \\
& \text { not valid } \therefore x=2
\end{aligned}
$$

9.3.1 $\frac{1}{\sqrt{n}+\sqrt{n+1}}$
$=\frac{1}{\sqrt{n}+\sqrt{n+1}} \times \frac{\sqrt{n}-\sqrt{n+1}}{\sqrt{n}-\sqrt{n+1}}$
$=\frac{\sqrt{n}-\sqrt{n+1}}{(\sqrt{n})^{2}-(\sqrt{n+1})^{2}}$
$=\frac{\sqrt{n}-\sqrt{n+1}}{n-(n+1)}$
$=\frac{\sqrt{n}-\sqrt{n+1}}{-1} \times \frac{(-1)}{(-1)}$
$=\sqrt{n+1}-\sqrt{n}<$
9.3.2 $\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\ldots+\frac{1}{\sqrt{99}+\sqrt{100}}$
$=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+\ldots+\sqrt{100}-\sqrt{99}$
$=+\sqrt{1}-\sqrt{100}$
$=9<$

9．1 Construction：
Diameter AE．Join EB．
Proof：
$\hat{A}_{1}+\hat{A}_{2}=90^{\circ}$
．diam．\perp tang．
\＆$\hat{B}_{1}+\hat{B}_{2}=90^{\circ}$
\angle in semi－\odot

But $\hat{A}_{2}=\hat{B}_{2}$
．EE subtends

$$
\hat{A}_{1}=\hat{B}_{1}<
$$

9.2

$=\hat{A}_{5}<\ldots$ vertically opposite \angle^{s}
$=\hat{P}_{1}(=x) \quad \ldots$ tang．$B A C$ ；chord $A N-$ thm．in 9.1
$\hat{Q}=\hat{P}_{1}(=x)$ above，i．e．alternate L^{s} are equal $<$
（a）$\hat{A}_{1}=90^{\circ} \quad \ldots$ diameter $Q R$ in bigger \odot $\therefore \hat{A}_{4}=90^{\circ} \quad \ldots$ vertically opposite \angle^{S}

PN is a diameter of the smaller $\odot<$
converse of＇\angle in semi－$\odot{ }^{\prime}$ thm．）
（b）NPT $=90^{\circ} \quad \ldots$ diameter $P N \perp$ tangent $P T$
$\therefore \hat{\mathrm{T}}=90^{\circ} \quad \ldots$ co－int．$\angle^{s} ; P N \| R G$
$\hat{A}_{1}=\hat{T}$
both $=90^{\circ}$
APTR is a cyclic quadrilateral＜
．．converse of＇ext．\angle of c．q．＇theorem

MEMO PAPER 2G

1．1．1 Mean， $\bar{x}=\frac{1(5)+2(10)+3(15)+4(10)+5(5)}{5+10+15+10+5}=\frac{135}{45}=3<$
The symmetry of the distribution allows us to give the mean from the graph．

1．1．2

x_{i}	f_{i}	$x_{\mathrm{i}}-\bar{x}$	$\left(x_{\mathrm{i}}-\bar{x}\right)^{2}$	$f_{\mathrm{i}} \times\left(x_{\mathrm{i}}-\bar{x}\right)^{2}$		
1	5	-2	4	20		
2	10	-1	1	10		
3	15	0	0	0		
4	10	1	1	10		
5	5	2	4	20		
	$\Sigma: 45$					

1．1．3 Variance $=\sigma^{2}=\frac{20+10+0+10+20}{5+10+15+10+5}=\frac{60}{45}=\frac{4}{3} \simeq 1,3<$ Standard Deviation $=\sigma=\sqrt{\frac{4}{3}}=1,1547 \ldots \simeq 1,2<$

1．2．1 Machine C．（Look at the position of the median）＜
1．2．2 It is likely that all 25 results will be different．＜ or：Mode cannot be seen on B \＆W plots．\＆

1．2．3 Machine B．（Look at the length of the box）＜
1．2．4 If the whiskers are small，the range is＂close＂to the inter－quartile range．＜

1．2．5 The box plot for machine A is symmetric around the median．
． $161 \pm 28,5$
． $57 \div 2=28,5$
$Q_{1} \simeq 132,5<\quad \&$

$$
Q_{3} \simeq 189,5<
$$

1．2．6 Set A ．The length of the whisker is longer than the length of the box＜．
A common rule is：
1,5 times the IQR to the extremes on either side．
2．1．1 $A B^{2}=(-2-4)^{2}+(8-4)^{2}=36+16=52$

$$
A B=\sqrt{52} \simeq 7,2 \text { units }<
$$

2．1．2 Midpoint of $B C=\left(\frac{4+1}{2} ; \frac{4-6}{2}\right)=\left(\frac{5}{2} ;-1\right)<$
2．1．3 $m_{A C}=\frac{8+6}{-2-1}=\frac{14}{-3}=-\frac{14}{3}<$

$$
\begin{aligned}
m & =\tan \theta \\
\tan \theta & =-\frac{14}{3} \quad \ldots m_{A C}
\end{aligned}
$$

$$
\theta=180^{\circ}-77,9^{\circ}=102,1^{\circ}<
$$

2

2．1．5 $\tan \alpha=m_{C B}$

$$
\begin{aligned}
& =\frac{4-(-6)}{4-1} \\
& =\frac{10}{3} \\
\therefore \alpha & =73,3^{\circ} \\
\hat{A C B} & =\theta-\alpha \\
& =28,8^{\circ}<
\end{aligned}
$$

2．2 y－int．；$c=2 \ldots B(0 ; 2)$ on the y－axis
\＆$m_{A B}=\frac{2-3}{0-1}=1$
gradient $=-1$
Eqn．：$y=-x+2<$
2．3．1 $y-a=2(x-b)$
$y=2 x-2 b+a$
Gradient，$m=2<$
2．3．2 Many answers are possible．
$C(1 ;-6)$ on graph $y-a=2(x-b)$

$$
\begin{aligned}
\Rightarrow-6-a & =2(1-b) \\
\therefore-a & =2-2 b+6 \\
\therefore a & =2 b-8
\end{aligned}
$$

Any pair of values for $a \& b$ as long $a s a=2 b-8$ e．g．$a=-6$ \＆$b=1 ; a=-8 \quad \& \quad b=0$ ，etc．＜

M
2.4.4 Area of $\triangle W O P=\frac{1}{2}$ OP. OW $\ldots A=\frac{1}{2} b h$

2

$$
=\frac{1}{2}(10)(5)
$$

$=25$ square units $<$

3.1.1 r^{2}	$=12^{2}+(-9)^{2}$
	$=144+81$
	$=225$
$\therefore r$	$=15$
$\therefore \sin \theta$	$=\frac{-9}{15}=-\frac{3}{5}$
3.1.2 $\quad \sin \theta$	$=-\frac{3}{5}$
$\therefore \theta$	$=360^{\circ}-36,9^{\circ}$
	$=323,1^{\circ}<$

3.1.3 $\quad \frac{x_{P}}{x_{R}}=\frac{12}{4}=3$

$$
\frac{y_{P}}{y_{R}}=\frac{-9}{a}=3
$$

$$
\therefore a=-3<
$$

3.2.1 $\frac{\sin A \cdot \cos A \cdot \tan A}{1-\cos ^{2} A}=\frac{\sin A \cdot \cos A \cdot \frac{\sin A}{\cos A}}{\sin ^{2} A}=\frac{\sin ^{2} A}{\sin ^{2} A}=1<$
3.2.2 $\tan \theta=\frac{\sin A \cdot \cos A \cdot \tan A}{1-\cos ^{2} A}$
$\therefore \tan \theta=1$

$$
\therefore \theta=45^{\circ}<
$$

or $\quad \theta=180^{\circ}+45^{\circ}=225^{\circ}<$

3.3.1 $\sin x=a<3.3 .2-\sin x=-a<3.3 .3-\sin x=-a<$
$3.4 \frac{\tan 300^{\circ}+\cos \left(90^{\circ}+x\right)}{\sin x+2 \cos \left(-30^{\circ}\right)}$
$=\frac{\left(-\tan 60^{\circ}\right)+(-\sin x)}{\sin x+2 \cos 30^{\circ}}$
$=\frac{-\sqrt{3}-\sin x}{\sin x+2\left(\frac{\sqrt{3}}{2}\right)}$
$=\frac{-(\sin x+\sqrt{3})}{\sin x+\sqrt{3}}$

$3.5 \quad 1-\cos \theta=\cos 44^{\circ}$
$\therefore \cos \theta=0,280660199$

$$
\theta= \pm 73,7^{\circ}+360^{\circ} k, k \in \mathbb{Z}<
$$

OR: $\quad \theta=73,7^{\circ}+360^{\circ} k<$
or $\theta=286,3^{\circ}+360 k<$
3.6.1 In $\triangle A C D: \quad D C^{2}=4^{2}+7^{2}-2(4)(7) \cdot \cos 60^{\circ}$ $=37$
$D C=6.1 \mathrm{~mm}<$
3.6.2 In $\triangle B C D: \frac{B C}{\sin 50^{\circ}}=\frac{6,1}{\sin 70^{\circ}}$

$$
B C=\frac{6,1 \sin 50^{\circ}}{\sin 70^{\circ}}
$$

$$
B C \simeq 5,0 \mathrm{~mm}<
$$

3.6.3 $\quad B \hat{C} D=60^{\circ}$

Area of $\triangle B C D=\frac{1}{2} \times 5 \times 6,1 \times \sin 60^{\circ}$

$$
=13,2 \mathrm{~mm}^{2}<\quad \ldots \begin{aligned}
& \text { but } 13,1 \mathrm{~mm}^{2} \text { with } \\
& \text { "stored" values }
\end{aligned}
$$

4.1.1 In $\triangle \mathrm{PQR}, 21^{2}+x^{2}-2 \times 21 \times x \times \cos 57^{\circ}=168^{2}$ $441+x^{2}-22,8748 x=28224$ $x^{2}-22,9 x-27783=0$
4.1.2 $\quad x=\frac{-(-22,9) \pm \sqrt{22,9^{2}-4(1)(-27783)}}{2(1)}$
$=178,5$ or $-155,6 \mathrm{n} / \mathrm{a}$
$\simeq 179<$
4.1.3 $Q E=k(F E)$

$$
k=\frac{Q E}{F E}
$$

OR: One can find QF in \triangle QPF by using
In \triangle RFE: $\mathrm{FR}=\frac{1}{2} x=89,5$
$\& \frac{F E}{F R}=\cos 12,8^{\circ}$ FE $=89,5 \cos 12,8^{\circ}$
= 87,275...

STO A

Also: $\frac{R E}{F R}=\sin 12,8^{\circ} \Rightarrow R E=89,5 \sin 12,8^{\circ}$ = 19,828...
\& In \triangle QRE: $Q E^{2}=168^{2}-R E^{2}$

$$
Q E=166,825 \ldots
$$

$k \simeq 1,9<$
4.2.1 Undefined when

$\tan ^{m} \theta$	$=1 \quad \ldots$ denom $=0 \quad O R$	$\tan \theta$ undefined	
$\tan \theta$	$= \pm 1$	$\therefore \theta$	$=90^{\circ}<$

$$
\therefore \theta=45^{\circ}<
$$

4.2.2 LHS $=\frac{\sin ^{m} \theta-\cos ^{m} \theta}{\tan ^{m} \theta-1}$

$$
\begin{aligned}
& =\frac{\sin ^{m} \theta-\cos ^{m} \theta}{\frac{\sin ^{m} \theta}{\cos ^{m} \theta}-1}\left(\times \frac{\cos ^{m} \theta}{\cos ^{m} \theta}\right) \\
& =\frac{\cos ^{m} \theta\left(\sin ^{m} \theta-\cos ^{m} \theta\right)}{\sin ^{m} \theta-\cos ^{m} \theta} \\
& =\cos ^{m} \theta
\end{aligned}
$$

$=$ RHS $<$
4.2.3 $\frac{\sin \theta-\cos \theta}{\tan \theta-1} \times \frac{\tan ^{2} \theta-1}{\sin ^{2} \theta-\cos ^{2} \theta} \times \frac{\sin ^{3} \theta-\cos ^{3} \theta}{\tan ^{3} \theta-1} \times$

$$
\frac{\tan ^{4} \theta-1}{\sin ^{4} \theta-\cos ^{4} \theta} \times \ldots \times \frac{\sin ^{2007} \theta-\cos ^{2007} \theta}{\tan ^{2007} \theta-1}
$$

$=\cos \theta \times \frac{1}{\cos ^{2} \theta} \times \cos ^{3} \theta \times \frac{1}{\cos ^{4} \theta} \times \ldots \times \cos ^{2007} \theta$
$=\left(\cos \theta \times \frac{1}{\cos ^{2} \theta}\right) \times\left(\cos ^{3} \theta \times \frac{1}{\cos ^{4} \theta}\right) \times \ldots \times \cos ^{2007} \theta$
$=\left(\frac{1}{\cos \theta}\right)\left(\frac{1}{\cos \theta}\right) \ldots \ldots .1003$ times $\times \cos ^{2007} \theta$
$=(\cos \theta)^{-1003} \times \cos ^{2007} \theta$
$=(\cos \theta)^{-1003+2007}$
$=(\cos \theta)^{1004}$, i.e. $\cos ^{1004} \theta<$
OR: $\quad \cos \theta \times\left(\frac{1}{\cos ^{2} \theta} \times \cos ^{3} \theta\right) \times\left(\frac{1}{\cos ^{4} \theta} \times \cos ^{5} \theta\right) \times$

$$
\times\left(\frac{1}{\cos ^{2006} \theta} \times \cos ^{2007} \theta\right)
$$

$=\cos \theta \cdot \cos \theta \cdot \cos \theta \cdot \ldots . . \cdot \cos \theta$
$=(\cos \theta)^{1+\frac{2006}{2}}$
$=\cos ^{1004} \theta<$
$\begin{aligned} & \text { 5.1.1 } \hat{O}_{3} \\ &=2 \hat{C}_{1} \quad \ldots \angle \text { at centre }=2 \times \angle \text { at circumference } \\ & \therefore \hat{O}_{3}=60^{\circ}<\end{aligned}$

TRIG SUMMARY (Grade 11)

- ANGLES IN STANDARD POSITIONS

- Positive \angle s
(anticlockwise from 0° to 360°):
- Negative $\angle \mathbf{s}$
(clockwise from 0° to -360°):
Also
possible

- identities

$\tan \theta=\frac{\sin \theta}{\cos \theta}$

- SPECIAL $\angle \mathrm{s}$

\& THEIR "FAMILIES":

4180°
$180^{\circ}+$
4 360° -
- GENERAL FORMS

- CO-RATIOS (sine and cosine)
- Minimum \& Maximum values of $\boldsymbol{\operatorname { s i n }} \boldsymbol{\theta} \& \cos \theta$: The values of $\boldsymbol{\operatorname { s i n }} \theta \& \boldsymbol{\operatorname { c o s }} \theta$ range from $\mathbf{- 1}$ to 1.

All values are proper fractions or $\mathbf{0}$ or $\mathbf{\pm 1}$

- Graphs:

$\boldsymbol{\operatorname { t a n }} \boldsymbol{\theta}$

Note that $\tan \theta$ has no minimum or maximum values

The range of values of $\tan \theta$ is from $-\infty$ to ∞.

- $9 \mathbf{9 0}^{\circ}$ - $\boldsymbol{\theta}$ (an acute angle) $\boldsymbol{\operatorname { s i n }}\left(90^{\circ}-\theta\right)=\boldsymbol{\operatorname { c o s }} \boldsymbol{\theta}$ $\boldsymbol{\operatorname { c o s }}\left(90^{\circ}-\theta\right)=\boldsymbol{\operatorname { s i n }} \theta$

- $9 \mathbf{0 0}^{\circ} \mathbf{+ \boldsymbol { \theta }}$ (an obtuse angle) II \quad y $\boldsymbol{\operatorname { s i n }}\left(90^{\circ}+\theta\right)=\boldsymbol{\operatorname { c o s }} \theta$ $\cos \left(90^{\circ}+\theta\right)=-\sin \theta$

The ratio CHANGES to the CO-ratio.

- SOLUTION OF Δ^{s}

In Right-angled $\Delta^{\mathbf{s}}$, we use:

- Regular trig. ratios
- the Theorem of Pythagoras
- Area $=\frac{1}{2} b h$

In Non-Right-angled $\Delta^{\mathbf{s}}$, we use:

- Sine Rule:	- Cosine Rule:	- Area Rule:
$\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$ $c^{2}=a^{2}+b^{2}-2 a b \cos C$	AREA $=\frac{1}{2} a b \sin C$	

But also: Area of $\Delta=\frac{1}{2}$ bh

[^0]
[^0]: Copyright © The Answer Series: Photocopying of this material is illegal

